Lucas定理:把n写成p进制a[n]a[n-1]a[n-2]...a[0],把m写成p进制b[n]b[n-1]b[n-2]...b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])*C(a[n-2],b[-2])*....*C(a[0],b[0])模p同余。

即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p)

这题是求C(n,0),C(n,1),C(n,2)...C(n,n).当中有多少个奇数
也是就是说 求C(n,m)%2==1 的个数 m的范围是0-n

C(n,m)%2,那么由lucas定理,我们可以写成二进制的形式观察

比如n=010 m为000 001 010
最终结果为 1+0+1=2
因为 C(0,1)=0
所以C(0,0)* C(1,0)*C(0,1)= 0
所以n = 010 中的0 不能对应m中的1 否则就会为了
n = 010 中的1 可以对应m中的0 或 1
也就变成了求n的二进制中有多少个1 求1的个数
最后结果为 2^(n中1的个数)

Sample Input
1 //n
2
11

Sample Output
2
2
8

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <string>
# include <cmath>
# include <queue>
# include <list>
# define LL long long
using namespace std ; int main()
{
//freopen("in.txt","r",stdin) ;
int n ;
while(scanf("%d",&n)!=EOF)
{
int cnt=;
while(n)
{
if(n&)
cnt++;
n>>=;
}
printf("%d\n",<<cnt);
}
return ;
}

hdu 4349 求C(n,0),C(n,1),C(n,2)...C(n,n).当中有多少个奇数 (Lucas定理推广)的更多相关文章

  1. 关于C(n,m) 的奇偶 ,与C(n,0),C(n,1),C(n,2)…C(n,n).当中有多少个奇数

    (n & m) == m  为奇数 C(n,0),C(n,1),C(n,2)…C(n,n).当中有多少个奇数 第一种想法是Lucas定理推导,我们分析一下 C(n,m)%2,那么由lucas定 ...

  2. HDU 4349 Xiao Ming's Hope lucas定理

    Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting nu ...

  3. hdu 4349 Xiao Ming's Hope lucas

    题目链接 给一个n, 求C(n, 0), C(n, 1), ..........C(n, n)里面有多少个是奇数. 我们考虑lucas定理, C(n, m) %2= C(n%2, m%2)*C(n/2 ...

  4. Algorithm --> 求阶乘末尾0的个数

    求阶乘末尾0的个数 (1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0. (2)求N!的二进制表示中最低位为1的位置. 第一题 考虑哪些数相 ...

  5. hdu 4349 Xiao Ming's Hope 规律

    Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU 4349——Xiao Ming's Hope——————【Lucas定理】

    Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. JDOJ 1775: 求N!中0的个数

    JDOJ 1775: 求N!中0的个数 JDOJ传送门 Description 求N!结果中末尾0的个数 N! = 1 * 2 * 3 ....... N Input 输入一行,N(0 < N ...

  8. HDU 4349 Xiao Ming&#39;s Hope

    非常无语的一个题. 反正我后来看题解全然不是一个道上的. 要用什么组合数学的lucas定理. 表示自己就推了前面几个数然后找找规律. C(n, m) 就是 组合n取m: (m!(n-m!)/n!) 假 ...

  9. HDU 4349 Xiao Ming's Hope [Lucas定理 二进制]

    这种题面真是够了......@小明 题意:the number of odd numbers of C(n,0),C(n,1),C(n,2)...C(n,n). 奇数...就是mod 2=1啊 用Lu ...

随机推荐

  1. linux命令总结之state命令

    ls 命令及其许多参数提供了一些非常有用的文件信息.另一个不太为人所熟知的命令 stat 提供了一些更为有用的信息. [root@Gin scripts]# man stat STAT() User ...

  2. 第10章-Vue.js 项目实战

    一.本节内容 掌握项目环境中路由的配置方法 ***** 熟练掌握编写单文件组件的编写 *** 能够使用swiper.js进行轮播图组件的封装 能够使用axios进行数据请求 二.webpack项目的目 ...

  3. Tomcat假死排查方案

    使用Tomcat作为Web服务器的时候偶尔会遇到Tomcat停止响应的情况,通过netstat查看端口情况会发现tomcat的端口出现大量的CLOSE_WAIT,此时Tomcat会停止响应前端请求,同 ...

  4. SVN不能提交代码

    Error: Some resources were not reverted. Attempted to lock an already-locked dir svn: Working copy ' ...

  5. 通过网络仓库建立本地的yum仓库

    [root@kazihuo ~]# yum -y install createrepo yum-utils [root@kazihuo ~]# yum -y install https://mirro ...

  6. why inline functions must be put in header files?

    [why inline functions must be put in header files?] 编译中有2个过程:compile.link.先进行compile,compile中把源代码编译成 ...

  7. SVN搭建和使用

    原文出处: http://www.cnblogs.com/tugenhua0707/p/3969558.html SVN简介: 为什么要使用SVN? 程序员在编写程序的过程中,每个程序员都会生成很多不 ...

  8. 编辑器之王:Emacs 和 Vim

    Emacs 是神的编辑器,而 Vim 是编辑器之神.二者为何会有如此美誉,且听本文向你一一道来. Author: Jiqing Wu email: jiqingwu@gmail.com homepag ...

  9. Java容器List接口

    List接口是Java中经常用到的接口,如果对具体的List实现类的特性不了解的话,可能会导致程序性能的下降,下面从原理上简单的介绍List的具体实现: 可以看到,List继承了Collection接 ...

  10. redis写定时任务获取root权限

    前提: 1.redis由root用户启动. 2.开启cron的时候,/var/spool/cron linux机器下默认的计划任务,linux会定时去执行里面的任务. 启动服务 :/sbin/serv ...