Lucas定理:把n写成p进制a[n]a[n-1]a[n-2]...a[0],把m写成p进制b[n]b[n-1]b[n-2]...b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])*C(a[n-2],b[-2])*....*C(a[0],b[0])模p同余。

即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p)

这题是求C(n,0),C(n,1),C(n,2)...C(n,n).当中有多少个奇数
也是就是说 求C(n,m)%2==1 的个数 m的范围是0-n

C(n,m)%2,那么由lucas定理,我们可以写成二进制的形式观察

比如n=010 m为000 001 010
最终结果为 1+0+1=2
因为 C(0,1)=0
所以C(0,0)* C(1,0)*C(0,1)= 0
所以n = 010 中的0 不能对应m中的1 否则就会为了
n = 010 中的1 可以对应m中的0 或 1
也就变成了求n的二进制中有多少个1 求1的个数
最后结果为 2^(n中1的个数)

Sample Input
1 //n
2
11

Sample Output
2
2
8

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <string>
# include <cmath>
# include <queue>
# include <list>
# define LL long long
using namespace std ; int main()
{
//freopen("in.txt","r",stdin) ;
int n ;
while(scanf("%d",&n)!=EOF)
{
int cnt=;
while(n)
{
if(n&)
cnt++;
n>>=;
}
printf("%d\n",<<cnt);
}
return ;
}

hdu 4349 求C(n,0),C(n,1),C(n,2)...C(n,n).当中有多少个奇数 (Lucas定理推广)的更多相关文章

  1. 关于C(n,m) 的奇偶 ,与C(n,0),C(n,1),C(n,2)…C(n,n).当中有多少个奇数

    (n & m) == m  为奇数 C(n,0),C(n,1),C(n,2)…C(n,n).当中有多少个奇数 第一种想法是Lucas定理推导,我们分析一下 C(n,m)%2,那么由lucas定 ...

  2. HDU 4349 Xiao Ming's Hope lucas定理

    Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting nu ...

  3. hdu 4349 Xiao Ming's Hope lucas

    题目链接 给一个n, 求C(n, 0), C(n, 1), ..........C(n, n)里面有多少个是奇数. 我们考虑lucas定理, C(n, m) %2= C(n%2, m%2)*C(n/2 ...

  4. Algorithm --> 求阶乘末尾0的个数

    求阶乘末尾0的个数 (1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0. (2)求N!的二进制表示中最低位为1的位置. 第一题 考虑哪些数相 ...

  5. hdu 4349 Xiao Ming's Hope 规律

    Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU 4349——Xiao Ming's Hope——————【Lucas定理】

    Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. JDOJ 1775: 求N!中0的个数

    JDOJ 1775: 求N!中0的个数 JDOJ传送门 Description 求N!结果中末尾0的个数 N! = 1 * 2 * 3 ....... N Input 输入一行,N(0 < N ...

  8. HDU 4349 Xiao Ming&#39;s Hope

    非常无语的一个题. 反正我后来看题解全然不是一个道上的. 要用什么组合数学的lucas定理. 表示自己就推了前面几个数然后找找规律. C(n, m) 就是 组合n取m: (m!(n-m!)/n!) 假 ...

  9. HDU 4349 Xiao Ming's Hope [Lucas定理 二进制]

    这种题面真是够了......@小明 题意:the number of odd numbers of C(n,0),C(n,1),C(n,2)...C(n,n). 奇数...就是mod 2=1啊 用Lu ...

随机推荐

  1. NATS_12:NATS Streaming详解

    NATS Streaming NATS Streaming是一个以NATS为驱动的数据流系统且它的源码也是由Golang语言编写的.其中NATS Streaming服务是一个可执行的文件名为:nats ...

  2. day7 方法及基础知识运用

    做了一个小型的成绩管理系统.主要代码如下: /* * 功能:简易学生成绩管理系统 */package day7; import java.util.Scanner; public class Home ...

  3. ip地址、子网掩码、DNS的关系与区别

    首先ip地址可能表示内网或者外网地址: 内网也就是局域网,最直观的就是像网吧,公司内部的电脑用交换机,HUB,路由连起来的.再通过光钎.猫接入INTERNET的. 外网就像你家里的一台电脑.用猫拨号上 ...

  4. jquery radio的操作

    radio 按钮组, name=”sex”. <input type="radio" name="sex" value="Male"& ...

  5. c++ 前置++与后置++的区别

    用C++编程的都知道,C++提供了一个非常强大的操作符重载机制,利用操作符重载,我们可以为我们自定义的类增加更多非常有用的功能.不过,C++也有限制,就是当我们为自定义的类重载操作符时,重载操作符的含 ...

  6. pandas 视频讲座 from youtube

    Stephen Simmons - Pandas from the inside - YouTube https://www.youtube.com/watch?v=Dr3Hv7aUkmU 2016年 ...

  7. 【BZOJ】3456: 城市规划 动态规划+多项式求逆

    [题意]求n个点的带标号无向连通图个数 mod 1004535809.n<=130000. [算法]动态规划+多项式求逆 [题解]设$g_n$表示n个点的无向图个数,那么显然 $$g_n=2^{ ...

  8. HTML字体的设置

    CSS字体设置 box-sizing:border #content-box   box-shadow:设置盒子边框的阴影.     字体动作:   font-family:设置字体.比如:‘微软雅黑 ...

  9. js_模块化

    https://www.cnblogs.com/scq000/p/10647128.html

  10. WeX5入门之欢乐捕鱼打包

    一.下载欢乐捕鱼的素材包 https://files.cnblogs.com/files/wordblog/%E7%B4%A0%E6%9D%90.zip 二.把欢乐捕鱼素材放入项目中 并启动tomca ...