hdu 4349 求C(n,0),C(n,1),C(n,2)...C(n,n).当中有多少个奇数 (Lucas定理推广)
Lucas定理:把n写成p进制a[n]a[n-1]a[n-2]...a[0],把m写成p进制b[n]b[n-1]b[n-2]...b[0],则C(n,m)与C(a[n],b[n])*C(a[n-1],b[n-1])*C(a[n-2],b[-2])*....*C(a[0],b[0])模p同余。
即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p)
这题是求C(n,0),C(n,1),C(n,2)...C(n,n).当中有多少个奇数
也是就是说 求C(n,m)%2==1 的个数 m的范围是0-n
C(n,m)%2,那么由lucas定理,我们可以写成二进制的形式观察
比如n=010 m为000 001 010
最终结果为 1+0+1=2
因为 C(0,1)=0
所以C(0,0)* C(1,0)*C(0,1)= 0
所以n = 010 中的0 不能对应m中的1 否则就会为了
n = 010 中的1 可以对应m中的0 或 1
也就变成了求n的二进制中有多少个1 求1的个数
最后结果为 2^(n中1的个数)
Sample Input
1 //n
2
11
Sample Output
2
2
8
# include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <string>
# include <cmath>
# include <queue>
# include <list>
# define LL long long
using namespace std ; int main()
{
//freopen("in.txt","r",stdin) ;
int n ;
while(scanf("%d",&n)!=EOF)
{
int cnt=;
while(n)
{
if(n&)
cnt++;
n>>=;
}
printf("%d\n",<<cnt);
}
return ;
}
hdu 4349 求C(n,0),C(n,1),C(n,2)...C(n,n).当中有多少个奇数 (Lucas定理推广)的更多相关文章
- 关于C(n,m) 的奇偶 ,与C(n,0),C(n,1),C(n,2)…C(n,n).当中有多少个奇数
(n & m) == m 为奇数 C(n,0),C(n,1),C(n,2)…C(n,n).当中有多少个奇数 第一种想法是Lucas定理推导,我们分析一下 C(n,m)%2,那么由lucas定 ...
- HDU 4349 Xiao Ming's Hope lucas定理
Xiao Ming's Hope Time Limit:1000MS Memory Limit:32768KB Description Xiao Ming likes counting nu ...
- hdu 4349 Xiao Ming's Hope lucas
题目链接 给一个n, 求C(n, 0), C(n, 1), ..........C(n, n)里面有多少个是奇数. 我们考虑lucas定理, C(n, m) %2= C(n%2, m%2)*C(n/2 ...
- Algorithm --> 求阶乘末尾0的个数
求阶乘末尾0的个数 (1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0. (2)求N!的二进制表示中最低位为1的位置. 第一题 考虑哪些数相 ...
- hdu 4349 Xiao Ming's Hope 规律
Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4349——Xiao Ming's Hope——————【Lucas定理】
Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- JDOJ 1775: 求N!中0的个数
JDOJ 1775: 求N!中0的个数 JDOJ传送门 Description 求N!结果中末尾0的个数 N! = 1 * 2 * 3 ....... N Input 输入一行,N(0 < N ...
- HDU 4349 Xiao Ming's Hope
非常无语的一个题. 反正我后来看题解全然不是一个道上的. 要用什么组合数学的lucas定理. 表示自己就推了前面几个数然后找找规律. C(n, m) 就是 组合n取m: (m!(n-m!)/n!) 假 ...
- HDU 4349 Xiao Ming's Hope [Lucas定理 二进制]
这种题面真是够了......@小明 题意:the number of odd numbers of C(n,0),C(n,1),C(n,2)...C(n,n). 奇数...就是mod 2=1啊 用Lu ...
随机推荐
- python实现域账号登陆
需求:公司的网路比较变态,每天到了24点自动断开,为了避免一台测试机断网,用python做了一个自动登录 原理:时间到了24点的时候,每隔10秒检测是否可以ping通www.baidu.com,如果p ...
- 转:IOS里的动画
摘要 本文主要介绍核iOS中的动画:核心动画Core Animation, UIView动画, Block动画, UIImageView的帧动画. 核心动画Core Animation UIView动 ...
- 科学计算三维可视化---TraitsUI(控件)
一:文本编辑器 from traits.api import HasTraits,Int,Str,Password from traitsui.api import View,Item,Group,M ...
- 科学计算三维可视化---TVTK管线与数据加载(数据集)
一:数据集 三维可视化的第一步是选用合适的数据结构来表示数据,TVTK提供了多种表示不同种类数据的数据集 (一)数据集--ImageData >>> from tvtk.api im ...
- Idea+TestNg配置test-output输出(转)
说明:testNG的工程我是使用eclipse创建的,直接导入到idea中,运行test时不会生产test-output,只能在idea的控制台中查看运行结果,然后到处报告,经过不懈的百度终于找到怎么 ...
- nodejs出现events.js:72中抛出错误 Error: listen EADDRINUSE
<pre>events.js:72 throw er; // Unhandled 'error' event ^ Error: listen EADDRINUSE at errnoExce ...
- 2014年最佳的10款 PHP 开发框架
PHP去年发生了翻天覆地的变化.似乎每个人都有一个想法一个好的框架应该是什么样子,但话又说回来,没有多少面积制品类型的框架或框架的最终实际使用在不同的生产项目. 你知道哪个框架选择为您的生产计划吗?你 ...
- 回溯算法——解决n皇后问题
所谓回溯(backtracking)是通过系统地搜索求解问题的方法.这种方法适用于类似于八皇后这样的问题:求得问题的一个解比较困难,但是检查一个棋局是否构成解很容易. 不多说,放上n皇后的回溯问题代码 ...
- HDU 1715 大斐波数 加法高精度
解题报告:求 斐波那契数,不过这题的n的范围是1000,肯定是早就超过了的,所以要用到高精度,所以这题其实就是一个加法高精度的题. 我的做法 是写一个大数相加的函数,然后打表就是了,这里注意的就是每次 ...
- Happy Matt Friends(HDU5119 + dp)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5119 题目: 题意: 求选择任意个数,使其异或和大于等于m的方案数. 思路: 每个数有选和不选两种方 ...