10分钟了解 pandas - pandas官方文档译文 [原创]
10 Minutes to pandas
英文原文:https://pandas.pydata.org/pandas-docs/stable/10min.html
版本:pandas 0.23.4
采集日期:2019-01-16
注:10分钟只够看完,囫囵吞枣。
参阅:10分钟学pandas
本文是对 pandas 的简短介绍,主要面向新用户。更加复杂的用法可以在 Cookbook 中查看。
按惯例导入语句可如下所示:
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt
创建对象
请参阅数据结构介绍。
以下将通过传入列表来创建一个 Series 对象,且让 pandas 创建默认的整数索引:
In [4]: s = pd.Series([1,3,5,np.nan,6,8]) In [5]: s
Out[5]:
0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
以下将通过传入 NumPy 数组来创建一个 DataFrame 对象,同时指定了日期索引和列的标题(Label)。
In [6]: dates = pd.date_range('', periods=6) In [7]: dates
Out[7]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D') In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD')) In [9]: df
Out[9]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
以下将通过传入字典对象来创建一个 DataFrame 对象,字典对象可被转换为类似序列的结构。
In [10]: df2 = pd.DataFrame({ 'A' : 1.,
....: 'B' : pd.Timestamp(''),
....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
....: 'D' : np.array([3] * 4,dtype='int32'),
....: 'E' : pd.Categorical(["test","train","test","train"]),
....: 'F' : 'foo' })
....: In [11]: df2
Out[11]:
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
以上生成的 DataFrame 中,列的 dtypes 属性各不相同。
In [12]: df2.dtypes
Out[12]:
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
如果正在使用 IPython,列名(以及公共属性)的 tab 键补全功能将会自动启用。下面列出了一部分将会自动补全的属性:
In [13]: df2.<TAB>
df2.A df2.bool
df2.abs df2.boxplot
df2.add df2.C
df2.add_prefix df2.clip
df2.add_suffix df2.clip_lower
df2.align df2.clip_upper
df2.all df2.columns
df2.any df2.combine
df2.append df2.combine_first
df2.apply df2.compound
df2.applymap df2.consolidate
df2.D
如上所述,A、B、C 和 D 列都能用 tab 键自动补全。其实 E 也可以,只是为了尽量简洁,其余的属性未被列出罢了。
查看数据
请参阅基础知识部分。
以下是查看 DataFrame 中第一行和最后一行数据的方法:
In [14]: df.head()
Out[14]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 In [15]: df.tail(3)
Out[15]:
A B C D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
以下方法将把索引、列和底层的 NumPy 数据显示出来:
In [16]: df.index
Out[16]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D') In [17]: df.columns
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object') In [18]: df.values
Out[18]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
[ 1.2121, -0.1732, 0.1192, -1.0442],
[-0.8618, -2.1046, -0.4949, 1.0718],
[ 0.7216, -0.7068, -1.0396, 0.2719],
[-0.425 , 0.567 , 0.2762, -1.0874],
[-0.6737, 0.1136, -1.4784, 0.525 ]])
describe() 将显示数据的统计信息速览。
In [19]: df.describe()
Out[19]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
std 0.843157 0.922818 0.779887 0.973118
min -0.861849 -2.104569 -1.509059 -1.135632
25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188
75% 0.658444 0.041933 -0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804
下面对数据作转置:
In [20]: df.T
Out[20]:
2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
按某个坐标轴向(这里是列)进行排序:
In [21]: df.sort_index(axis=1, ascending=False)
Out[21]:
D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
2013-01-04 0.271860 -1.039575 -0.706771 0.721555
2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690
以下按值进行排序:
In [22]: df.sort_values(by='B')
Out[22]:
A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
选取数据(Selection)
注意:虽然用于数据选取和赋值的标准 Python / Numpy 表达式比较直观且可用于交互模式,但对于生产代码还是建议采用经过优化的 pandas 数据访问方法:.at、.iat、.loc和.iloc。
请参阅如何进行索引的文档:进行索引及选取数据 、多重索引 / 高级索引。
数据读取
下面选取一列数据,这将生成一个 Series 对象,等效于 df.A:
In [23]: df['A']
Out[23]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64
下面通过 [] 选取数据,这会对数据行进行切片。
In [24]: df[0:3]
Out[24]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [25]: df['':'']
Out[25]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
用标题选取数据
详情请参阅用标题查询数据。
以下利用标题获取断面数据(cross section):
In [26]: df.loc[dates[0]]
Out[26]:
A 0.469112
B -0.282863
C -1.509059
D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64
用标题按多个轴向选取数据:
In [27]: df.loc[:,['A','B']]
Out[27]:
A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648
下面将显示按标题选取的切片数据,两边端点的数据也会包含在内:
In [28]: df.loc['':'',['A','B']]
Out[28]:
A B
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
降低返回对象的数据维度:
In [29]: df.loc['',['A','B']]
Out[29]:
A 1.212112
B -0.173215
Name: 2013-01-02 00:00:00, dtype: float64
以下将获取实际数据(scalar )值:
In [30]: df.loc[dates[0],'A']
Out[30]: 0.46911229990718628
下面将快速读取实际数据值(与上一个方法等效):
In [31]: df.at[dates[0],'A']
Out[31]: 0.46911229990718628
用位置选取数据
详情请参阅用位置选取数据。
以下用整数参数表示的位置选取数据:
In [32]: df.iloc[3]
Out[32]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64
用整数表示的切片选取数据,与 numpy / python 的做法类似:
In [33]: df.iloc[3:5,0:2]
Out[33]:
A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
用整数表示的位置列表选取数据,类似于 numpy / python 的风格:
In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]:
A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232
以下明确指定了行切片:
In [35]: df.iloc[1:3,:]
Out[35]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
明确指定了列切片:
In [36]: df.iloc[:,1:3]
Out[36]:
B C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215 0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05 0.567020 0.276232
2013-01-06 0.113648 -1.478427
明确要求读取某一项数据值:
In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858
快速读取某一项数据(与上一方法等效):
In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858
布尔索引
以下利用某一列的值选取数据。
In [39]: df[df.A > 0]
Out[39]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
下面从 DataFrame 中选取符合某个布尔条件的值。
In [40]: df[df > 0]
Out[40]:
A B C D
2013-01-01 0.469112 NaN NaN NaN
2013-01-02 1.212112 NaN 0.119209 NaN
2013-01-03 NaN NaN NaN 1.071804
2013-01-04 0.721555 NaN NaN 0.271860
2013-01-05 NaN 0.567020 0.276232 NaN
2013-01-06 NaN 0.113648 NaN 0.524988
Using the isin() method for filtering:
利用 isin() 方法过滤数据:
In [41]: df2 = df.copy() In [42]: df2['E'] = ['one', 'one','two','three','four','three'] In [43]: df2
Out[43]:
A B C D E
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three In [44]: df2[df2['E'].isin(['two','four'])]
Out[44]:
A B C D E
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
赋值(Setting)
赋值一列新数据时,将会自动根据索引进行数据匹配(align)。
In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('', periods=6)) In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64 In [47]: df['F'] = s1
根据标题赋值:
In [48]: df.at[dates[0],'A'] = 0
根据位置赋值:
In [49]: df.iat[0,1] = 0
用 NumPy 数组赋值:
In [50]: df.loc[:,'D'] = np.array([5] * len(df))
上述赋值操作的结果将如下所示。
In [51]: df
Out[51]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 0.119209 5 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0
2013-01-05 -0.424972 0.567020 0.276232 5 4.0
2013-01-06 -0.673690 0.113648 -1.478427 5 5.0
以下是带有 where 操作的赋值。
In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2
Out[54]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 -5 NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0
缺失数据(Missing Data)
pandas 主要采用 np.nan 表示缺失数据。 在计算过程中,默认不会涵盖这类值。请参阅缺失数据部分。
重建索引操作可以修改、添加、删除指定轴向上的索引,并会返回数据的副本。
In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E']) In [56]: df1.loc[dates[0]:dates[1],'E'] = 1 In [57]: df1
Out[57]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN
以下将删除所有包含缺失数据的行。
In [58]: df1.dropna(how='any')
Out[58]:
A B C D F E
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
下面将给缺失数据填入值。
In [59]: df1.fillna(value=5)
Out[59]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0
以下将获取数据是否为 nan 的布尔值。
In [60]: pd.isna(df1)
Out[60]:
A B C D F E
2013-01-01 False False False False True False
2013-01-02 False False False False False False
2013-01-03 False False False False False True
2013-01-04 False False False False False True
运算
请参阅二元运算的基础知识。
统计运算
运算通常都不涉及缺失数据。
以下将执行描述性统计(descriptive statistic):
In [61]: df.mean()
Out[61]:
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64
下面按另一轴向进行同样的统计:
In [62]: df.mean(1)
Out[62]:
2013-01-01 0.872735
2013-01-02 1.431621
2013-01-03 0.707731
2013-01-04 1.395042
2013-01-05 1.883656
2013-01-06 1.592306
Freq: D, dtype: float64
以下将对多个对象进行运算,他们维数不同且需要做数据匹配。并且 pandas 还会自动沿着指定维度将运算传递下去(broadcast)。
In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2) In [64]: s
Out[64]:
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1.0
2013-01-04 3.0
2013-01-05 5.0
2013-01-06 NaN
Freq: D, dtype: float64 In [65]: df.sub(s, axis='index')
Out[65]:
A B C D F
2013-01-01 NaN NaN NaN NaN NaN
2013-01-02 NaN NaN NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0
2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0
2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0
2013-01-06 NaN NaN NaN NaN NaN
Apply
以下将对数据应用多个函数:
In [66]: df.apply(np.cumsum)
Out[66]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 -1.389850 10 1.0
2013-01-03 0.350263 -2.277784 -1.884779 15 3.0
2013-01-04 1.071818 -2.984555 -2.924354 20 6.0
2013-01-05 0.646846 -2.417535 -2.648122 25 10.0
2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0 In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]:
A 2.073961
B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype: float64
值的分布情况(Histogram)
更多信息请参阅分布和离散度。
In [68]: s = pd.Series(np.random.randint(0, 7, size=10)) In [69]: s
Out[69]:
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
9 4
dtype: int64 In [70]: s.value_counts()
Out[70]:
4 5
6 2
2 2
1 1
dtype: int64
字符串方法
Series 在 str 属性中配备了一组字符串处理方法,可以轻松地对数组的每个元素进行操作,下面的代码片段给出了演示。 请注意,str 中的模式匹配通常默认使用正则表达式(在某些情况下一定会使用)。更多信息请参阅 向量化的字符串方法.。
In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) In [72]: s.str.lower()
Out[72]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
数据合并(merge)
合并(concat)
pandas 提供了多种数据合并手段,在 join / merge 类操作时,可以轻松地将 Series、DataFrame、Panel 对象与多种索引设置逻辑、相关代数函数组合在一起使用。
请参阅数据合并。
下面用 concat() 函数将多个 pandas 对象拼接在一起。
In [73]: df = pd.DataFrame(np.random.randn(10, 4)) In [74]: df
Out[74]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495 # break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]] In [76]: pd.concat(pieces)
Out[76]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
连接(join)
这是 SQL 风格的合并。请参阅数据库风格的连接操作。
In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]}) In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]}) In [79]: left
Out[79]:
key lval
0 foo 1
1 foo 2 In [80]: right
Out[80]:
key rval
0 foo 4
1 foo 5 In [81]: pd.merge(left, right, on='key')
Out[81]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
下面给出另一个例子:
In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]}) In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]}) In [84]: left
Out[84]:
key lval
0 foo 1
1 bar 2 In [85]: right
Out[85]:
key rval
0 foo 4
1 bar 5 In [86]: pd.merge(left, right, on='key')
Out[86]:
key lval rval
0 foo 1 4
1 bar 2 5
追加(append)
向 DataFrame 添加数据行。参见添加数据。
In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D']) In [88]: df
Out[88]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758 In [89]: s = df.iloc[3] In [90]: df.append(s, ignore_index=True)
Out[90]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
8 1.453749 1.208843 -0.080952 -0.264610
分组(group)
通过分组操作要完成的是涉及以下一个或多个步骤的操作过程:
- 根据某些条件将数据拆分到多个组中
- 对每组数据单独应用某个函数
- 将结果并入某个数据结构中
参见分组操作。
In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
....: 'foo', 'bar', 'foo', 'foo'],
....: 'B' : ['one', 'one', 'two', 'three',
....: 'two', 'two', 'one', 'three'],
....: 'C' : np.random.randn(8),
....: 'D' : np.random.randn(8)})
....: In [92]: df
Out[92]:
A B C D
0 foo one -1.202872 -0.055224
1 bar one -1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three -0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two -0.392670 -0.136473
6 foo one 0.007207 -0.561757
7 foo three 1.928123 -1.623033
下面先执行分组,再对结果调用 sum() 函数。
In [93]: df.groupby('A').sum()
Out[93]:
C D
A
bar -2.802588 2.42611
foo 3.146492 -0.63958
先根据多个数据列进行分组操作,形成多级索引,然后还能再调用 sum 函数。
In [94]: df.groupby(['A','B']).sum()
Out[94]:
C D
A B
bar one -1.814470 2.395985
three -0.595447 0.166599
two -0.392670 -0.136473
foo one -1.195665 -0.616981
three 1.928123 -1.623033
two 2.414034 1.600434
重塑(Reshape)
压缩(Stack)
In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
....: 'foo', 'foo', 'qux', 'qux'],
....: ['one', 'two', 'one', 'two',
....: 'one', 'two', 'one', 'two']]))
....: In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) In [98]: df2 = df[:4] In [99]: df2
Out[99]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230
stack()
方法会“压缩” DataFrame 数据列的层级。
In [100]: stacked = df2.stack() In [101]: stacked
Out[101]:
first second
bar one A 0.029399
B -0.542108
two A 0.282696
B -0.087302
baz one A -1.575170
B 1.771208
two A 0.816482
B 1.100230
dtype: float64
针对“已压缩”的 DataFrame 或 Series(带有 MultiIndex 作 index ),stack() 的逆操作是 unstack(),默认情况下将取消最后一级压缩操作:
In [102]: stacked.unstack()
Out[102]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230 In [103]: stacked.unstack(1)
Out[103]:
second one two
first
bar A 0.029399 0.282696
B -0.542108 -0.087302
baz A -1.575170 0.816482
B 1.771208 1.100230 In [104]: stacked.unstack(0)
Out[104]:
first bar baz
second
one A 0.029399 -1.575170
B -0.542108 1.771208
two A 0.282696 0.816482
B -0.087302 1.100230
数据透视表(Pivot Table)
请参阅数据透视表。
In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
.....: 'B' : ['A', 'B', 'C'] * 4,
.....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
.....: 'D' : np.random.randn(12),
.....: 'E' : np.random.randn(12)})
.....: In [106]: df
Out[106]:
A B C D E
0 one A foo 1.418757 -0.179666
1 one B foo -1.879024 1.291836
2 two C foo 0.536826 -0.009614
3 three A bar 1.006160 0.392149
4 one B bar -0.029716 0.264599
5 one C bar -1.146178 -0.057409
6 two A foo 0.100900 -1.425638
7 three B foo -1.035018 1.024098
8 one C foo 0.314665 -0.106062
9 one A bar -0.773723 1.824375
10 two B bar -1.170653 0.595974
11 three C bar 0.648740 1.167115
由上述数据生成数据透视表是非常简单的。
In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[107]:
C bar foo
A B
one A -0.773723 1.418757
B -0.029716 -1.879024
C -1.146178 0.314665
three A 1.006160 NaN
B NaN -1.035018
C 0.648740 NaN
two A NaN 0.100900
B -1.170653 NaN
C NaN 0.536826
时间 Series
为了能在改变采样频率时执行重采样操作(例如将每秒数据转为5分钟数据),pandas 提供了简单、强大且高效的功能。 这在财务应用中非常常见,但不仅限于此。请参阅时间 Series。
In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S') In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) In [110]: ts.resample('5Min').sum()
Out[110]:
2012-01-01 25083
Freq: 5T, dtype: int64
时区的表示方式:
In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D') In [112]: ts = pd.Series(np.random.randn(len(rng)), rng) In [113]: ts
Out[113]:
2012-03-06 0.464000
2012-03-07 0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64 In [114]: ts_utc = ts.tz_localize('UTC') In [115]: ts_utc
Out[115]:
2012-03-06 00:00:00+00:00 0.464000
2012-03-07 00:00:00+00:00 0.227371
2012-03-08 00:00:00+00:00 -0.496922
2012-03-09 00:00:00+00:00 0.306389
2012-03-10 00:00:00+00:00 -2.290613
Freq: D, dtype: float64
以下将转换为其他时区:
In [116]: ts_utc.tz_convert('US/Eastern')
Out[116]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00 0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64
各种时间间隔(Span)表示方式之间的转换:
In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M') In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng) In [119]: ts
Out[119]:
2012-01-31 -1.134623
2012-02-29 -1.561819
2012-03-31 -0.260838
2012-04-30 0.281957
2012-05-31 1.523962
Freq: M, dtype: float64 In [120]: ps = ts.to_period() In [121]: ps
Out[121]:
2012-01 -1.134623
2012-02 -1.561819
2012-03 -0.260838
2012-04 0.281957
2012-05 1.523962
Freq: M, dtype: float64 In [122]: ps.to_timestamp()
Out[122]:
2012-01-01 -1.134623
2012-02-01 -1.561819
2012-03-01 -0.260838
2012-04-01 0.281957
2012-05-01 1.523962
Freq: MS, dtype: float64
在时间段(Period)和时间戳(Timestamp)之间进行转换,可以使用一些方便的算术运算函数。 在下面的示例中,将用11月作为年度结束的按季度结算频率转换为用每季度结束次月的上午9点作为按季度结算频率:
In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV') In [124]: ts = pd.Series(np.random.randn(len(prng)), prng) In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9 In [126]: ts.head()
Out[126]:
1990-03-01 09:00 -0.902937
1990-06-01 09:00 0.068159
1990-09-01 09:00 -0.057873
1990-12-01 09:00 -0.368204
1991-03-01 09:00 -1.144073
Freq: H, dtype: float64
分类(Categorical)
pandas 可在 DataFrame 中加入分类信息。完整的文档请参阅分类简介和 API 文档。
In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
下面将 raw_grade 转换为 category 数据类型。
In [128]: df["grade"] = df["raw_grade"].astype("category") In [129]: df["grade"]
Out[129]:
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]
下面将类别重命名为更有意义的名字(原地给 Series.cat.categories 赋值!)。
In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]
对类别重新排序并同时把类别补全(Series.cat 中的方法默认返回一个新 Series 对象)。
In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"]) In [132]: df["grade"]
Out[132]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]
以下排序是按类别的顺序进行的,而不是按照单词的顺序。
In [133]: df.sort_values(by="grade")
Out[133]:
id raw_grade grade
5 6 e very bad
1 2 b good
2 3 b good
0 1 a very good
3 4 a very good
4 5 a very good
按类别分组时,没有数据的类别也会显示出来。
In [134]: df.groupby("grade").size()
Out[134]:
grade
very bad 1
bad 0
medium 0
good 2
very good 3
dtype: int64
绘制图表(Plot)
请参阅绘制图表的文档。
In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)) In [136]: ts = ts.cumsum() In [137]: ts.plot()
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7f213444c048>
在 DataFrame 中,用 plot() 方法绘制所有带标题的列非常方便:
In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
.....: columns=['A', 'B', 'C', 'D'])
.....: In [139]: df = df.cumsum() In [140]: plt.figure(); df.plot(); plt.legend(loc='best')
Out[140]: <matplotlib.legend.Legend at 0x7f212489a780>
输入输出数据
CSV
下面写入为 csv 文件:
In [141]: df.to_csv('foo.csv')
下面从 csv 文件读取数据:
In [142]: pd.read_csv('foo.csv')
Out[142]:
Unnamed: 0 A B C D
0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
.. ... ... ... ... ...
993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns]
HDF5
读写 HDF 存储文件。
下面写入为 HDF5 存储文件。
In [143]: df.to_hdf('foo.h5','df')
从 HDF5 存储文件读取数据。
In [144]: pd.read_hdf('foo.h5','df')
Out[144]:
A B C D
2000-01-01 0.266457 -0.399641 -0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 0.449933 -0.741620 -1.962409
2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
... ... ... ... ...
2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]
Excel
读写 Excel 文件。
以下写入为 Excel 文件。
In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')
从 Excel 文件读取数据。
In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Out[146]:
A B C D
2000-01-01 0.266457 -0.399641 -0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 0.449933 -0.741620 -1.962409
2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
... ... ... ... ...
2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]
答疑(Gotcha)
当执行某项操作时,或许会出现类似以下异常情况:
>>> if pd.Series([False, True, False]):
print("I was true")
Traceback
...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
详细的解释及对策请参阅比较操作。
另请参阅答疑。
10分钟了解 pandas - pandas官方文档译文 [原创]的更多相关文章
- Daphile 安装手册 -- 官方文档译文 [原创]
Daphile 安装手册(Daphile Installation) 英文原文:https://www.daphile.com/download/DaphileInstallation.pdf 采集日 ...
- Daphile FAQ -- 官方文档译文 [原创]
Daphile FAQ 英文原文:https://www.daphile.com/download/FAQ.txt 采集日期:2021-01-03 常见问题解答:(FAQ) Q1:没有声音.Daphi ...
- PEP 324 subprocess 新的进程模块 -- Python官方文档译文 [原创]
PEP 324 -- subprocess 新的进程模块(subprocess - New process module) 英文原文:https://www.python.org/dev/peps/p ...
- reactor官方文档译文(1)Reactor简介
原文地址:http://projectreactor.io/docs/reference/ Reactor简介 Reactor是一个基础库,用在构建实时数据流应用.要求有容错和低延迟至毫秒.纳秒.皮秒 ...
- App开发架构指南(谷歌官方文档译文)
这篇文章面向的是已经掌握app开发基本知识,想知道如何开发健壮app的读者. 注:本指南假设读者对 Android Framework 已经很熟悉.如果你还是app开发的新手,请查看 Getting ...
- reactor官方文档译文(2)Reactor-core模块
You should never do your asynchronous work alone. — Jon Brisbin 完成Reactor 1后写到 You should never do y ...
- Extjs6官方文档译文——应用架构简介(MVC,MVVM)
应用架构简介 Extjs 同时提供对于MVC和MVVM应用架构的支持.这两个架构方式共享某些概念,而且都旨在沿着逻辑层面划分应用程序代码.每种方法在选择如何划分应用组件上都有其各自的优势. 本指南的目 ...
- iOS·官方文档译文框架源码注解
导语
- Apple官方文档译文GitHub框架源码注解
引导
随机推荐
- Rabbitmq.md
RabbitMQ介绍 什么是RabbitMQ RabbitMQ是实现AMQP(高级消息队列协议)的消息中间件的一种,最初起源于金融系统,用于在分布式系统中存储转发消息,在易用性.扩展性.高可用性等方面 ...
- iOS 开源库系列 Aspects核心源码分析---面向切面编程之疯狂的 Aspects
Aspects的源码学习,我学到的有几下几点 Objective-C Runtime 理解OC的消息分发机制 KVO中的指针交换技术 Block 在内存中的数据结构 const 的修饰区别 block ...
- 判断浏览器是否为ie的最快方法
var ie = !-[1,]; alert(ie); 只要6 bytes!它利用了IE与标准浏览器在处理数组的toString方法的差异做成的.对于标准游览器,如果数组里面最后一个字符为逗号,JS引 ...
- 02.Java入门
Java 是SUN(Starfard University Network)公司在1995年开发的一门完全面向对象的,开源的高级编程语言. Java的发展历史 1995年诞生,1996年发布第一个版本 ...
- DNS_PROBE_FINISHED_NXDOMAIN 问题解决
手动设置 (说明:如果您使用DNS有特殊设置,请保存设置后再进行操作) 1.打开[控制面板]→[网络连接]→打开[本地连接]→[属性]:2.双击[Internet 协议(TCP/IP)]→选择[自 ...
- 封装一个统一返回json结果类JsonResult
import java.io.Serializable; public class JsonResult implements Serializable{ private static final l ...
- C中typedef 函数指针的使用
类型定义的语法可以归结为一句话:只要在变量定义前面加上typedef,就成了类型定义.这儿的原本应该是变量的东西,就成为了类型. int integer; //整型变量int *pointer ...
- P1841 [JSOI2007]重要的城市
题目描述 参加jsoi冬令营的同学最近发现,由于南航校内修路截断了原来通向计算中心的路,导致去的路程比原先增加了近一公里.而食堂门前施工虽然也截断了原来通向计算中心的路,却没有使路程增加,因为可以找到 ...
- iOS - dispatch_after解说
dispatch_after 是来延迟执行的GCD方法,因为在主线程中我们不能用sleep来延迟方法的调用,所以用dispatch_after是最合适的 dispatch_after 能让我们添加进队 ...
- 理解C++类的继承方式(小白)
基类里的 public(大人) protect(青年) private(小孩) 在通过继承时 继承方式public(我是大人咯) protect(我是青少年) private(我系小孩纸啦) &qu ...