Spark中cache和persist的区别
cache和persist都是用于将一个RDD进行缓存的,这样在之后使用的过程中就不需要重新计算了,可以大大节省程序运行时间。
cache和persist的区别
基于Spark 1.6.1 的源码,可以看到
/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def cache(): this.type = persist()
说明是cache()调用了persist(), 想要知道二者的不同还需要看一下persist函数:
/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)
可以看到persist()内部调用了persist(StorageLevel.MEMORY_ONLY),继续深入:
/**
* Set this RDD's storage level to persist its values across operations after the first time
* it is computed. This can only be used to assign a new storage level if the RDD does not
* have a storage level set yet..
*/
def persist(newLevel: StorageLevel): this.type = {
// TODO: Handle changes of StorageLevel
if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) {
throw new UnsupportedOperationException(
"Cannot change storage level of an RDD after it was already assigned a level")
}
sc.persistRDD(this)
// Register the RDD with the ContextCleaner for automatic GC-based cleanup
sc.cleaner.foreach(_.registerRDDForCleanup(this))
storageLevel = newLevel
this
}
可以看出来persist有一个 StorageLevel 类型的参数,这个表示的是RDD的缓存级别。
至此便可得出cache和persist的区别了:cache只有一个默认的缓存级别MEMORY_ONLY ,而persist可以根据情况设置其它的缓存级别。
RDD的缓存级别
顺便看一下RDD都有哪些缓存级别,查看 StorageLevel 类的源码:
object StorageLevel {
val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, )
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, )
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, )
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, )
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, )
val OFF_HEAP = new StorageLevel(false, false, true, false)
......
}
可以看到这里列出了12种缓存级别,但这些有什么区别呢?可以看到每个缓存级别后面都跟了一个StorageLevel的构造函数,里面包含了4个或5个参数,如下
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
查看其构造函数
class StorageLevel private(
private var _useDisk: Boolean,
private var _useMemory: Boolean,
private var _useOffHeap: Boolean,
private var _deserialized: Boolean,
private var _replication: Int = )
extends Externalizable {
......
def useDisk: Boolean = _useDisk
def useMemory: Boolean = _useMemory
def useOffHeap: Boolean = _useOffHeap
def deserialized: Boolean = _deserialized
def replication: Int = _replication
......
}
可以看到StorageLevel类的主构造器包含了5个参数:
- useDisk:使用硬盘(外存)
- useMemory:使用内存
- useOffHeap:使用堆外内存,这是Java虚拟机里面的概念,堆外内存意味着把内存对象分配在Java虚拟机的堆以外的内存,这些内存直接受操作系统管理(而不是虚拟机)。这样做的结果就是能保持一个较小的堆,以减少垃圾收集对应用的影响。
- deserialized:反序列化,其逆过程序列化(Serialization)是java提供的一种机制,将对象表示成一连串的字节;而反序列化就表示将字节恢复为对象的过程。序列化是对象永久化的一种机制,可以将对象及其属性保存起来,并能在反序列化后直接恢复这个对象
- replication:备份数(在多个节点上备份)
理解了这5个参数,StorageLevel 的12种缓存级别就不难理解了。
val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2) 就表示使用这种缓存级别的RDD将存储在硬盘以及内存中,使用序列化(在硬盘中),并且在多个节点上备份2份(正常的RDD只有一份)
另外还注意到有一种特殊的缓存级别
val OFF_HEAP = new StorageLevel(false, false, true, false)
使用了堆外内存,StorageLevel 类的源码中有一段代码可以看出这个的特殊性,它不能和其它几个参数共存。
if (useOffHeap) {
require(!useDisk, "Off-heap storage level does not support using disk")
require(!useMemory, "Off-heap storage level does not support using heap memory")
require(!deserialized, "Off-heap storage level does not support deserialized storage")
require(replication == , "Off-heap storage level does not support multiple replication")
}
Spark中cache和persist的区别的更多相关文章
- RDD中cache和persist的区别
通过观察RDD.scala源代码即可知道cache和persist的区别: def persist(newLevel: StorageLevel): this.type = { if (storage ...
- spark中的cache和persist的区别
在使用中一直知其然不知其所以然的地使用RDD.cache(),系统的学习之后发现还有一个与cache功能类似看起来冗余的persist 点进去一探究竟之后发现cache()是persist()的特例, ...
- Spark中ml和mllib的区别
转载自:https://vimsky.com/article/3403.html Spark中ml和mllib的主要区别和联系如下: ml和mllib都是Spark中的机器学习库,目前常用的机器学习功 ...
- spark中map与flatMap的区别
作为spark初学者对,一直对map与flatMap两个函数比较难以理解,这几天看了和写了不少例子,终于把它们搞清楚了 两者的区别主要在于action后得到的值 例子: import org.apac ...
- Spark中repartition和partitionBy的区别
repartition 和 partitionBy 都是对数据进行重新分区,默认都是使用 HashPartitioner,区别在于partitionBy 只能用于 PairRDD,但是当它们同时都用于 ...
- Spark中groupBy groupByKey reduceByKey的区别
groupBy 和SQL中groupby一样,只是后面必须结合聚合函数使用才可以. 例如: hour.filter($"version".isin(version: _*)).gr ...
- Linux中cache和buff的区别
两者都是:缓冲区 cache是存在于cpu和内存之间的缓冲区,存放的是从disk上读取到的数据 buff是用于存放要输出到块存储的数据 清除缓冲的方法 [root@DD-Server-9F ~]# e ...
- RDD的Cache、Persist、Checkpoint的区别和StorageLevel存储级别划分
为了增强容错性和高可用,避免上游RDD被重复计算的大量时间开销,Spark RDD设计了包含多种存储级别的缓存和持久化机制,主要有三个概念:Cache.Persist.Checkout. 1.存储级别 ...
- spark中map与mapPartitions区别
在spark中,map与mapPartitions两个函数都是比较常用,这里使用代码来解释一下两者区别 import org.apache.spark.{SparkConf, SparkContext ...
随机推荐
- MVC C# JS根据后台传入对象设置
今天(20170401)在借鉴代码的时候,看到如下一串 @if (Model.Product.ID > 0) { <script> $(function () { setSpecLi ...
- Python基础---->python的使用(二)
学习一下python,这里对python的基础知识做一个整理.似等了一百年忽而明白,即使再见面,成熟地表演,不如不见. python的一些应用 一.类似于java中的MessageFormat用法 w ...
- 【Java基础系列】Java IO系统
前言 创建好的输入/输出系统不仅要考虑三种不同种类的IO系统(文件,控制台,网络连接)还需要通过大量不同的方式与他们通信(顺序,随机访问,二进制,字符,按行,按字等等). 一.输入和输出 Java的I ...
- html2canvas - 实现网页截图(+下载截图) 功能
实现:html2canvas + canvas.toDataURL 首先,引入依赖插件: import { html2canvas } from './html2canvas'; html2canva ...
- 初学lua --lua嵌入c++的一个问题(初始化lua出错,版本问题)
初学lua.从http://lua-users.org/wiki/CallingLuaFromCpp上下载了一个lua嵌入C++的代码.编译并运行.发现有错误: PANIC: unprotected ...
- Laya 位图字体制作(失败...)
参考: 官网教程-位图字体的制作与使用 一.下载字体并安装字体 从站长字体下载了液晶数字字体,将TTF文件拖入C盘windows/Font文件夹,则字体会自动安装 二.下载字体制作工具 Bitmap ...
- C# DataView操作DataTable
1.DataView筛选数据 //假设有一个DataTable数据 DataTable dt = new DataTable(); //DataTable转成DefaultView DataView ...
- where are you from
where are you from 如果问美国人这句话的话,他们一般会说: I'm from California. I'm from Pennsylvanian. 一般是说州,而不是说Americ ...
- JavaScript 包管理工具npm 和yarn 对比
- [Oracle]Oracle之Chr函数返回
Chr函数 返回:返回 String,其中包含有与指定的字符代码相关的字符. chr('39')是单引号 Chr("0") 为0的字符 Chr("1") Chr ...