ZOJ - 3216:Compositions (DP&矩阵乘法&快速幂)
We consider problems concerning the number of ways in which a number can be written as a sum. If the order of the terms in the sum is taken into account the sum is called a composition and the number of compositions of n is denoted by c(n). Thus, the compositions of 3 are
- 3 = 3
- 3 = 1 + 2
- 3 = 2 + 1
- 3 = 1 + 1 + 1
So that c(3) = 4.
Suppose we denote by c(n, k) the number of compositions of n
with all summands at least k. Thus, the compositions of 3 with all
summands at least 2 are
- 3 = 3
The other three compositions of 3 all have summand 1, which is less than 2. So that c(3, 2) = 1.
Input
The first line of the input is an integer t (t <= 30), indicate the number of cases.
For each case, there is one line consisting of two integers n k (1 <= n <= 109, 1 <= k <= 30).
Output
Output c(n, k) modulo 109 + 7.
Sample Input
2
3 1
3 2
Sample Output
4
1
题意:给定N,K,问N可以由多少个不小于K的数组合起来。
思路:当K=1时,就是隔板法,组合数之和,答案是2^(N-1) ;当K>1;可以得到方程dp[i]=dp[i-1]+dp[i-k];
我们用dpi表示和为i有多少种方案,那么考虑最后一个数,如果最后一个数=k,那么其方案数=dp[i-k];如果>k,那么其方案数=dp[i-1]; 想到这里就知道用矩阵乘法来做了。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int Mod=1e9+;
int L;
int qpow(int a,int x)
{
int res=; while(x){
if(x&) res=1LL*res*a%Mod;
a=1LL*a*a%Mod; x>>=;
} return res;
}
struct mat
{
int mp[][];
mat(){memset(mp,,sizeof(mp));}
mat friend operator*(mat a,mat b){
mat res;
rep(k,,L)
rep(i,,L)
rep(j,,L)
(res.mp[i][j]+=1LL*a.mp[i][k]*b.mp[k][j]%Mod)%=Mod;
return res;
}
mat friend operator^(mat a,int x){
mat res; rep(i,,L) res.mp[i][i]=;
while(x){
if(x&) res=res*a;
a=a*a; x>>=;
} return res;
}
};
int main()
{
int T,N,K;
scanf("%d",&T);
while(T--){
scanf("%d%d",&N,&K);
if(N<K) {puts(""); continue;}
if(K==){ printf("%d\n",qpow(,N-)); continue;}
mat ans,base; L=K;
ans.mp[][]=;
base.mp[][]=base.mp[][K]=;
rep(i,,K) base.mp[i][i-]=;
ans=(base^(N-K))*ans;
printf("%d\n",ans.mp[][]);
}
return ;
}
ZOJ - 3216:Compositions (DP&矩阵乘法&快速幂)的更多相关文章
- 【BZOJ-1009】GT考试 KMP+DP+矩阵乘法+快速幂
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2745 Solved: 1694[Submit][Statu ...
- 【BZOJ 2323】 2323: [ZJOI2011]细胞 (DP+矩阵乘法+快速幂*)
2323: [ZJOI2011]细胞 Description 2222年,人类在银河系外的某颗星球上发现了生命,并且携带了一个细胞回到了地球.经过反复研究,人类已经完全掌握了这类细胞的发展规律: 这种 ...
- BZOJ-1875 HH去散步 DP+矩阵乘法快速幂
1875: [SDOI2009]HH去散步 Time Limit: 20 Sec Memory Limit: 64 MB Submit: 1196 Solved: 553 [Submit][Statu ...
- Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2
1732 Fibonacci数列 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 在“ ...
- ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...
- codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数
对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些 ...
- [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>
题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...
随机推荐
- TinyXML用法小结2
参考:http://www.cnblogs.com/hgwang/p/5833638.html TinyXML用法小结 1. 介绍 Tinyxml的官方网址:http://www.grinn ...
- css3转盘
此效果涉及到 : 1. css 画图形 2. css3 动态效果 3. 贝塞尔曲线 用法 <style> .lds-hourglass { display: inline-block; p ...
- WPF:改变ListBoxItem和ListViewItem的颜色
目录 1. 改变ListBoxItem颜色 2. ListViewItem的颜色设置 注意: 本文仅讨论默认ListBoxItem和ListViewItem的鼠标指向和被选择后的前景和背景颜色设置.如 ...
- English trip -- VC(情景课)8 C
MP review: 音标(Phonetic symbol) [ɪ] lit adj. 照亮的,点着的(light的过去式及过去分词)n. (Lit)人名:(瑞典)利特:(老)李 [ʊ] g ...
- 用Rails.5.2+ Vue.js做 vue-todolist app
Rails5.2+Vue.js完成Lists(curd) 注意: Edit/update使用SPA(single-page Application单页面程序)的方法完成.点击文字出现一个输入框和按钮. ...
- mongoDB——自动分片(转)
原文地址:http://www.lanceyan.com/tech/arch/mongodb_shard1.html 在系统早期,数据量还小的时候不会引起太大的问题,但是随着数据量持续增多,后续迟早会 ...
- 浅浅的分析LED呼吸灯的实现和PWM的关系
前言 在本周,我们在python课上做了一个实验,用ARDUINO使小LED灯模仿出呼吸灯的效果,实验进行的很成功,但是机器当仅输出高/低电平的时候是怎么样才能做到渐亮渐暗(输出电压)的变化呢?在这里 ...
- Python并行(parallel)之谈
简介 可以先看看并发Concurrent与并行Parallel的区别 在谈并行前,头脑中总会浮出多线程.多进程.线程/进程同步.线程/进程通信等词语. 那为什么需要同步.通信,它们之间的作用是怎样的呢 ...
- ccf交通规划
一.试题 问题描述 G国国王来中国参观后,被中国的高速铁路深深的震撼,决定为自己的国家也建设一个高速铁路系统. 建设高速铁路投入非常大,为了节约建设成本,G国国王决定不新建铁路,而是将已有的铁路改 ...
- BUCTOJ_ACM2017C 回文串的热爱
#include "iostream" #include "algorithm" #include "cstdio" #include &q ...