描述

Farmer John has decided to bring water to his N (1 <= N <= 300) pastures which are conveniently numbered 1..N. He may bring water to a pasture either by building a well in that pasture or connecting the pasture via a pipe to another pasture which already has water.

Digging a well in pasture i costs W_i (1 <= W_i <= 100,000). Connecting pastures i and j with a pipe costs P_ij (1 <= P_ij <= 100,000; P_ij = P_ji; P_ii=0).

Determine the minimum amount Farmer John will have to pay to water all of his pastures.

输入

  • Line 1: A single integer: N
  • Lines 2..N + 1: Line i+1 contains a single integer: W_i
  • Lines N+2..2N+1: Line N+1+i contains N space-separated integers; the j-th integer is P_ij

输出

  • Line 1: A single line with a single integer that is the minimum cost of providing all the pastures with water.

样例输入

4
5
4
4
3
0 2 2 2
2 0 3 3
2 3 0 4
2 3 4 0

样例输出

9

提示

INPUT DETAILS:

There are four pastures. It costs 5 to build a well in pasture 1,4 in pastures 2 and 3, 3 in pasture 4. Pipes cost 2, 3, and 4depending on which pastures they connect.

OUTPUT DETAILS:

Farmer John may build a well in the fourth pasture and connect each pasture to the first, which costs 3 + 2 + 2 + 2 = 9.

题意

农夫要打若干井,和挖连通两个田的水路,求所有田都有水的最小花费

题解

由于有一个挖井系统且必须要挖1个井,所以可以把井看成1个图上的点,然后跑一遍最小生成树即可

代码

 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; #define MAXN 300+5
#define MAXM 90000
int n,m,F[MAXN],Vis[MAXN];
struct edge
{
int u,v,w;
}edges[MAXM];
int Find(int x)
{
return F[x]==-?x:F[x]=Find(F[x]);
}
bool cmp(edge a,edge b)
{
return a.w<b.w;
}
int Kruskal()
{
memset(F,-,sizeof(F));
sort(edges,edges+m,cmp);
int ans=,cnt=,u,v,w,fx,fy;
for(int i=;i<m;i++)
{
u=edges[i].u;
v=edges[i].v;
w=edges[i].w;
fx=Find(u);
fy=Find(v);
if(fx!=fy)
{
ans+=w;
cnt++;
F[fx]=fy;
}
if(cnt==n)break;//连通田n-1条边,加井1条边
}
return ans;
}
void addedges(int u,int v,int w)
{
edges[m].u=u;
edges[m].v=v;
edges[m++].w=w;
}
int main()
{
int w;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&w);
addedges(,i,w);
}
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
scanf("%d",&w);
if(i>=j)continue;
addedges(i,j,w);
}
}
int ans=Kruskal();
printf("%d\n",ans);
return ;
}

TZOJ 2754 Watering Hole(最小生成树Kruskal)的更多相关文章

  1. Kruskal || BZOJ 1601: [Usaco2008 Oct]灌水 || Luogu P1550 [USACO08OCT]打井Watering Hole

    题面:P1550 [USACO08OCT]打井Watering Hole 题解:无 代码: #include<cstdio> #include<cstring> #includ ...

  2. p1221网络布线(最小生成树 Prim(普里母)算法) p1222 Watering Hole

    描述 Description 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当然,他需要你的帮助.约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路 ...

  3. [USACO08OCT]Watering Hole

    [USACO08OCT]Watering Hole 题目大意: Farmer John 有\(n(n\le300)\)个牧场,他希望灌溉他的所有牧场.牧场编号为\(1\sim n\),要灌溉一个牧场有 ...

  4. Luogu P1550 打井Watering Hole

    P1550 [USACO08OCT]打井Watering Hole 题目背景 John的农场缺水了!!! 题目描述 Farmer John has decided to bring water to ...

  5. bzoj1601 / P1550 [USACO08OCT]打井Watering Hole(堆优化prim)

    P1550 [USACO08OCT]打井Watering Hole   对于自己建水库的情况,新建一个虚拟结点,和其他点的边权即为自建水库的费用 这样问题就转化为一个裸最小生成树问题了. 这里用堆优化 ...

  6. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  7. 洛谷P1550 [USACO08OCT]打井Watering Hole

    P1550 [USACO08OCT]打井Watering Hole 题目背景 John的农场缺水了!!! 题目描述 Farmer John has decided to bring water to ...

  8. 最小生成树——Kruskal与Prim算法

    最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...

  9. 【转】最小生成树——Kruskal算法

    [转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...

随机推荐

  1. 【Python编程:从入门到实践】chapter8 函数

    chapter8 函数 8.6 将函数存储在模块中 8.6.1 导入整个模块 要让函数是可导入的,的先创建模块.模块 的扩展名为.py的文件 import pizza 8.6.2 到导入特定的函数 f ...

  2. HFDS核心技术

    HDFS 设计的前提与目标 HDFS体系结构1 HDFS体系结构2 HDFS特性与优点 高容错性保障机制 HDFS不适合的场景 HDFS2.0的新特征 HA-QJM Federation 快照 异构层 ...

  3. C#中的Attribute详解(下)

    原文地址:https://blog.csdn.net/xiaouncle/article/details/70229119 C#中的Attribute详解(下) 一.Attribute本质 从上篇里我 ...

  4. node 删除文件 和文件夹

    删除文件 var fs = require('fs'); fs.unlink(path,callback); 删除文件夹 deleteFolder(path); function deleteFold ...

  5. HTML 标签元素的 align 属性

    align 属性规定段落中文本的对齐方式. 有 left  right center  justify 这些参数 left  right center  就是左对齐 右对齐 中间对齐 justify  ...

  6. Gradle Maven部署,转化

    参考:(易百教程)http://www.yiibai.com/gradle/gradle_deployment.html 目录: Gradle部署 Maven转化为Gradle Gradle部署: c ...

  7. 前端开发-3-HTML-body标签

    body标签 h.p.a.ul.ol.div.img. 想要在网页上展示出来的内容一定要放在body标签中. 把我们之前海燕那一段HTML代码贴过来,保存到一个HTML格式的文件中. <!DOC ...

  8. HttpClient获取返回类型为JSON或XML的数据

    Java_HttpClient获取返回类型为JSON或XML的数据 原创 2017年04月06日 17:38:29 706 HttpClient 获取返回类型为JSON或XML的数据 使用httpco ...

  9. redis数据迁移

    redis的备份和还原,借助了第三方的工具---redis-dump,  redis中使用redis-dump导出.导入.还原数据实例 1.安装redis-dump # yum install rub ...

  10. ActiveMQ安全设置:设置admin的用户名和密码

    ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到 <bean id="securityConstraint" class="o ...