Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing
in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected
in source currency. 

For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 

You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges,
and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively. 

Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative
sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain
6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3

For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2

Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations
will be less than 10 4

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

题意:

就是不同的货币换来换去 有汇率和手续费 问能不能换来换去换来换去把自己的钱变多

思路:

某些节点可以不停地重复 因为是增值的 增值到一定程度以后再往回肯定是可行的

刚开始不知道要怎么存图  最后用的结构体 设了边

然后不知道怎么判断到达某样的条件就可以成功

看了题解 只用判断存在环就可以了

如果回到原来的货币已经比开始的大了就可以直接退出了

改变一下松弛条件

double t = (d[point[j].beg] - point[j].c) * point[j].r;

    if(d[point[j].ed] < t){

        d[point[j].ed] = t;

        return true;

    }

    return false;

代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<map>
#include<cstring>
#include<queue>
#include<stack>
#define inf 0x3f3f3f3f using namespace std; int n, m, s, point_num;
double v;
struct edge{
int beg, ed;
double r, c;
}point[210];
double d[205]; void addpoint(int beg, int ed, double r, double c)
{
point[point_num].beg = beg;
point[point_num].ed = ed;
point[point_num].r = r;
point[point_num].c = c;
point_num++;
} bool relax(int j)
{
double t = (d[point[j].beg] - point[j].c) * point[j].r;
if(d[point[j].ed] < t){
d[point[j].ed] = t;
return true;
}
return false;
} bool bellman_ford()
{
for(int i = 1; i <= n; i++){
d[i] = 0.0;
}
d[s] = v;
for(int i = 0; i < n - 1; i++){
bool flag = false;
for(int j = 0; j < point_num; j++){
if(relax(j)) flag = true;
}
if(d[s] > v) return true;
if(!flag) return false;
}
for(int i = 0; i < point_num; i++){
if(relax(i)) return true;
}
return false;
} int main()
{
while(cin>>n>>m>>s>>v){
point_num = 0;
for(int i = 0; i < m; i++){
int a, b;
double ra, ca, rb, cb;
cin>>a>>b>>ra>>ca>>rb>>cb;
addpoint(a, b, ra, ca);
addpoint(b, a, rb, cb);
} if(bellman_ford()){
cout<<"YES"<<endl;
}
else{
cout<<"NO"<<endl;
}
}
return 0;
}

POJ1860 Currency Exchange【最短路-判断环】的更多相关文章

  1. POJ1860 Currency Exchange(最短路)

    题目链接. 分析: 以前没做出来,今天看了一遍题竟然直接A了.出乎意料. 大意是这样,给定不同的金币的编号,以及他们之间的汇率.手续费,求有没有可能通过不断转换而盈利. 直接用Bellman-ford ...

  2. POJ1860——Currency Exchange(BellmanFord算法求最短路)

    Currency Exchange DescriptionSeveral currency exchange points are working in our city. Let us suppos ...

  3. POJ 1860 Currency Exchange (bellman-ford判负环)

    Currency Exchange 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/E Description Several c ...

  4. POJ 1860 Currency Exchange【SPFA判环】

    Several currency exchange points are working in our city. Let us suppose that each point specializes ...

  5. POJ 1860 Currency Exchange 最短路+负环

    原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Tota ...

  6. POJ-1860 Currency Exchange( Bellman_Ford, 正环 )

    题目链接:http://poj.org/problem?id=1860 Description Several currency exchange points are working in our ...

  7. POJ1860 Currency Exchange(bellman-ford)

    链接:http://poj.org/problem?id=1860 Currency Exchange Description Several currency exchange points are ...

  8. POJ 1860 Currency Exchange (最短路)

    Currency Exchange Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u S ...

  9. (简单) POJ 1860 Currency Exchange,SPFA判圈。

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

随机推荐

  1. 为什么React事件处理函数必须使用Function.bind()绑定this?

    最近在React官网学习Handling Events这一章时,有一处不是很明白.代码如下: class Toggle extends React.Component { constructor(pr ...

  2. Javascript获取IFrame内容(兼容IE&FF)

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://wintys.blog.51cto.com/425414/123303 作者: W ...

  3. java的子类覆盖梗

    项目上线,用户注册时验证码一直报错误,数据库也没问题,代码貌似也没问题. 后面排查到最后,发现是一个子类覆盖父属性问题. JAVA代码中,子类覆盖父类的私有.保护属性,如果不设置get.set方法,拿 ...

  4. CMake区分MSVC版本

    MSVC++ 4.x _MSC_VER == 1000 MSVC++ 5.0 _MSC_VER == 1100 MSVC++ 6.0 _MSC_VER == 1200 MSVC++ 7.0 _MSC_ ...

  5. c语言学习笔记---预编译

    专题三: 1)       预编译 处理所有的注释,以空格代替, 将所有的#define删除,并且展开所有的宏定义, 处理条件编译指令#if,#ifdef,#elif,#else,#endif 处理# ...

  6. C++ template —— 函数对象和回调(十四)

    本篇是本系列博文最后一篇,主要讲解函数对象和回调的相关内容.函数对象(也称为仿函数)是指:可以使用函数调用语法进行调用的任何对象.在C程序设计语言中,有3种类似于函数调用语法的实体:函数.类似于函数的 ...

  7. 使用IEDA新建jsp项目以后使用javax.servlet.*报错

    新建一个jsp项目,然后再里面配置完了一切写了一个servlet的文件: 点击运行的时候出现了javax程序包不存在的错误,百度了许多都在说是tomcat的事情,吧tomcat/lib下面的servl ...

  8. 《Lua程序设计》9.1 协同程序基础 学习笔记

    协同程序(coroutine)与线程(thread)差不多,也就是一条执行序列,拥有自己独立的栈.局部变量和指令指针,同时又与其他协同程序共享全局变量和其他大部分东西.从概念上讲线程与协同程序的主要区 ...

  9. 《转》python学习(10)-集合

    转自 http://www.cnblogs.com/BeginMan/p/3160565.html 一.目录 1.集合概述 2.关于集合的操作符.关系符号 3.集合的一系列操作(添加.更新.访问.删除 ...

  10. git怎么使用

    1_创建一个git服务器 2_开发人员小A从服务器拉取代码 3_小A提交代码 4_小c拉取代码 5_小a现在的代码 6_小c改变了小a的代码 7_小c将变更提交一下 8_小a拉取服务器的代码 9_小A ...