POJ1860 Currency Exchange【最短路-判断环】
in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected
in source currency.
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges,
and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative
sum of money while making his operations.
Input
6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2.
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations
will be less than 10 4.
Output
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES
题意:
就是不同的货币换来换去 有汇率和手续费 问能不能换来换去换来换去把自己的钱变多
思路:
某些节点可以不停地重复 因为是增值的 增值到一定程度以后再往回肯定是可行的
刚开始不知道要怎么存图 最后用的结构体 设了边
然后不知道怎么判断到达某样的条件就可以成功
看了题解 只用判断存在环就可以了
如果回到原来的货币已经比开始的大了就可以直接退出了
改变一下松弛条件
double t = (d[point[j].beg] - point[j].c) * point[j].r;
if(d[point[j].ed] < t){
d[point[j].ed] = t;
return true;
}
return false;
代码:
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<map>
#include<cstring>
#include<queue>
#include<stack>
#define inf 0x3f3f3f3f
using namespace std;
int n, m, s, point_num;
double v;
struct edge{
int beg, ed;
double r, c;
}point[210];
double d[205];
void addpoint(int beg, int ed, double r, double c)
{
point[point_num].beg = beg;
point[point_num].ed = ed;
point[point_num].r = r;
point[point_num].c = c;
point_num++;
}
bool relax(int j)
{
double t = (d[point[j].beg] - point[j].c) * point[j].r;
if(d[point[j].ed] < t){
d[point[j].ed] = t;
return true;
}
return false;
}
bool bellman_ford()
{
for(int i = 1; i <= n; i++){
d[i] = 0.0;
}
d[s] = v;
for(int i = 0; i < n - 1; i++){
bool flag = false;
for(int j = 0; j < point_num; j++){
if(relax(j)) flag = true;
}
if(d[s] > v) return true;
if(!flag) return false;
}
for(int i = 0; i < point_num; i++){
if(relax(i)) return true;
}
return false;
}
int main()
{
while(cin>>n>>m>>s>>v){
point_num = 0;
for(int i = 0; i < m; i++){
int a, b;
double ra, ca, rb, cb;
cin>>a>>b>>ra>>ca>>rb>>cb;
addpoint(a, b, ra, ca);
addpoint(b, a, rb, cb);
}
if(bellman_ford()){
cout<<"YES"<<endl;
}
else{
cout<<"NO"<<endl;
}
}
return 0;
}
POJ1860 Currency Exchange【最短路-判断环】的更多相关文章
- POJ1860 Currency Exchange(最短路)
题目链接. 分析: 以前没做出来,今天看了一遍题竟然直接A了.出乎意料. 大意是这样,给定不同的金币的编号,以及他们之间的汇率.手续费,求有没有可能通过不断转换而盈利. 直接用Bellman-ford ...
- POJ1860——Currency Exchange(BellmanFord算法求最短路)
Currency Exchange DescriptionSeveral currency exchange points are working in our city. Let us suppos ...
- POJ 1860 Currency Exchange (bellman-ford判负环)
Currency Exchange 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/E Description Several c ...
- POJ 1860 Currency Exchange【SPFA判环】
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
- POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- POJ-1860 Currency Exchange( Bellman_Ford, 正环 )
题目链接:http://poj.org/problem?id=1860 Description Several currency exchange points are working in our ...
- POJ1860 Currency Exchange(bellman-ford)
链接:http://poj.org/problem?id=1860 Currency Exchange Description Several currency exchange points are ...
- POJ 1860 Currency Exchange (最短路)
Currency Exchange Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u S ...
- (简单) POJ 1860 Currency Exchange,SPFA判圈。
Description Several currency exchange points are working in our city. Let us suppose that each point ...
随机推荐
- apache 配置会话保持
1.修改apache_home/conf/httpd.conf,增加以下模块(取消注释,如有其他依赖, 则相应取消注释) LoadModule proxy_module modules/mod_pro ...
- 【转载】springboot + swagger
注:本文参考自 http://www.jianshu.com/p/0465a2b837d2 https://www.cnblogs.com/java-zhao/p/5348113.html swagg ...
- JQuery难点备忘
1 jquery绑定事件如何传递参数 $("#btn").bind("click",{"id":"111"," ...
- NYOJ 116 士兵杀敌 (线段树,区间和)
题目链接:NYOJ 116 士兵杀敌 士兵杀敌(二) 时间限制:1000 ms | 内存限制:65535 KB 难度:5 描写叙述 南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的 ...
- Java -- Java 类集 -- 目录
13.1 认识类集 13.1.1 基本概念 13.1.2 类集框架主要接口 13.2 Collection接口 13.2.1 Collection接口的定义 13.2.2 Collection子接口的 ...
- Java -- 新IO -- 目录
20.1 Java 新IO简介 20.2 缓冲区与Buffer 例:演示缓冲区的操作流程 Class : IntBufferDemo01 20.2.2 深入缓冲区操作 20.2.3 创建子缓冲区 20 ...
- 转载mysql数据库配置优化
网上有很多的文章教怎么配置MySQL服务器,但考虑到服务器硬件配置的不同,具体应用的差别,那些文章的做法只能作为初步设置参考,我们需要根据自己的情况进行配置优化,好的做法是MySQL服务器稳定运行了一 ...
- Weblogic(CVE-2017-10271)漏洞复现
WebLogic XMLDecoder反序列化漏洞(CVE-2017-10271) 漏洞编号:CVE-2017-10271 漏洞描述:WebLogic WLS组件中存在CVE-2017-10271远程 ...
- iOS开发--打印NSRange,CGRect等结构体
使用对应的转换NSStringFromCGPoint NSStringFromCGSize NSStringFromCGRect NSStringFromCGAffineTransform ...
- BootStrap Table将时间戳更改为日期格式
一.使用BootStrap Table遇到的问题: 1.MyBatis从数据库中取出的时间格式如下:2017-12-04 21:43:19.0,时间后面多了一个点零. 2.从BootStrap Tab ...