Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing
in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected
in source currency. 

For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 

You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges,
and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively. 

Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative
sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain
6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3

For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2

Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations
will be less than 10 4

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

题意:

就是不同的货币换来换去 有汇率和手续费 问能不能换来换去换来换去把自己的钱变多

思路:

某些节点可以不停地重复 因为是增值的 增值到一定程度以后再往回肯定是可行的

刚开始不知道要怎么存图  最后用的结构体 设了边

然后不知道怎么判断到达某样的条件就可以成功

看了题解 只用判断存在环就可以了

如果回到原来的货币已经比开始的大了就可以直接退出了

改变一下松弛条件

double t = (d[point[j].beg] - point[j].c) * point[j].r;

    if(d[point[j].ed] < t){

        d[point[j].ed] = t;

        return true;

    }

    return false;

代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<map>
#include<cstring>
#include<queue>
#include<stack>
#define inf 0x3f3f3f3f using namespace std; int n, m, s, point_num;
double v;
struct edge{
int beg, ed;
double r, c;
}point[210];
double d[205]; void addpoint(int beg, int ed, double r, double c)
{
point[point_num].beg = beg;
point[point_num].ed = ed;
point[point_num].r = r;
point[point_num].c = c;
point_num++;
} bool relax(int j)
{
double t = (d[point[j].beg] - point[j].c) * point[j].r;
if(d[point[j].ed] < t){
d[point[j].ed] = t;
return true;
}
return false;
} bool bellman_ford()
{
for(int i = 1; i <= n; i++){
d[i] = 0.0;
}
d[s] = v;
for(int i = 0; i < n - 1; i++){
bool flag = false;
for(int j = 0; j < point_num; j++){
if(relax(j)) flag = true;
}
if(d[s] > v) return true;
if(!flag) return false;
}
for(int i = 0; i < point_num; i++){
if(relax(i)) return true;
}
return false;
} int main()
{
while(cin>>n>>m>>s>>v){
point_num = 0;
for(int i = 0; i < m; i++){
int a, b;
double ra, ca, rb, cb;
cin>>a>>b>>ra>>ca>>rb>>cb;
addpoint(a, b, ra, ca);
addpoint(b, a, rb, cb);
} if(bellman_ford()){
cout<<"YES"<<endl;
}
else{
cout<<"NO"<<endl;
}
}
return 0;
}

POJ1860 Currency Exchange【最短路-判断环】的更多相关文章

  1. POJ1860 Currency Exchange(最短路)

    题目链接. 分析: 以前没做出来,今天看了一遍题竟然直接A了.出乎意料. 大意是这样,给定不同的金币的编号,以及他们之间的汇率.手续费,求有没有可能通过不断转换而盈利. 直接用Bellman-ford ...

  2. POJ1860——Currency Exchange(BellmanFord算法求最短路)

    Currency Exchange DescriptionSeveral currency exchange points are working in our city. Let us suppos ...

  3. POJ 1860 Currency Exchange (bellman-ford判负环)

    Currency Exchange 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/E Description Several c ...

  4. POJ 1860 Currency Exchange【SPFA判环】

    Several currency exchange points are working in our city. Let us suppose that each point specializes ...

  5. POJ 1860 Currency Exchange 最短路+负环

    原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Tota ...

  6. POJ-1860 Currency Exchange( Bellman_Ford, 正环 )

    题目链接:http://poj.org/problem?id=1860 Description Several currency exchange points are working in our ...

  7. POJ1860 Currency Exchange(bellman-ford)

    链接:http://poj.org/problem?id=1860 Currency Exchange Description Several currency exchange points are ...

  8. POJ 1860 Currency Exchange (最短路)

    Currency Exchange Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u S ...

  9. (简单) POJ 1860 Currency Exchange,SPFA判圈。

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

随机推荐

  1. [Scikit-learn] 2.5 Dimensionality reduction - ICA

    理论学习: 独立成分分析ICA历史 Ref: Lecture 15 | Machine Learning (Stanford) - NG From: https://wenku.baidu.com/v ...

  2. 数据注解特性--NotMapped

    NotMapped特性可以应用到领域类的属性中,Code-First默认的约定,是为所有带有get,和set属性选择器的属性创建数据列.. NotManpped特性打破了这个约定,你可以使用NotMa ...

  3. windows 7 64位出现Oracle中文乱码

    提示oracle客户端无法连接指定字符 安装好客户端之后,如图 将数据库dbhome_1中的network文件夹全部复制到客户端,如图 然后在设置环境变量:F:\app\Administrator\p ...

  4. openURL调用其他程序(转)

    转自:http://blog.csdn.net/iefreer/article/details/8812708 一个应用程序,可以调用其它的应用程序的. 和其它应用程序进行通讯如果一个应用程序支持一些 ...

  5. hdu5289 2015多校联合第一场1002 Assignment

    题意:给出一个数列.问当中存在多少连续子区间,当中子区间的(最大值-最小值)<k 思路:设dp[i]为从区间1到i满足题意条件的解.终于解即为dp[n]. 此外 如果对于arr[i] 往左遍历 ...

  6. swift开发之--代理协议的使用

    swift代理的使用,和oc版本有区别,区别还是蛮大的,不过和oc一样都是用于反向传值: 实现如下: 1,声明两个类 2,实现流程,viewcontroller页面点击按钮进入firstVC页面,然后 ...

  7. MessageDigest类提供MD5或SHA等加密算法

    MessageDigest可使用的加密方法有MD2\MD5\SHA-1\SHA-256\SHA-384\SHA-512,使用时候只替换相应参数值即可 MessageDigest md5 = Messa ...

  8. Spring整合quartz2.2.3总结,quartz动态定时任务,Quartz定时任务集群配置

    Spring整合quartz2.2.3总结,quartz动态定时任务,Quartz定时任务集群配置 >>>>>>>>>>>>&g ...

  9. Linux-selinux

    查看SELinux状态: 1./usr/sbin/sestatus -v      ##如果SELinux status参数为enabled即为开启状态 SELinux status:         ...

  10. PHP代码执行函数总结

    PHP中可以执行代码的函数,常用于编写一句话木马,可能导致代码执行漏洞,这里对代码执行函数做一些归纳. 常见代码执行函数,如 eval().assert().preg_replace().create ...