因为数的总和一定,所以用一个人得分越高,那么另一个人的得分越低。  

  用$dp[i][j]$表示从$[i, j]$开始游戏,先手能够取得的最高分。

  转移通过枚举取的数的个数$k$来转移。因为你希望先手得分尽量高,所以另一个人的最高得分应尽量少。

  $dp[i][j] = sum[i][j] - \min \{dp[i + k][j],dp[i][j - k]\}$

  但是发现计算$dp[i + k][j],dp[i][j - k]$的最小值的地方很重复,所以用一个$f[i][j]$储存前者的最优值,$g[i][j]$储存后者的最优值。

  这样就将代码的时间复杂度优化到O(n2)

Code

 /**
* uva
* Problem#10891
* Accepted
* Time:0ms
*/
#include<iostream>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<sstream>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<stack>
using namespace std;
typedef bool boolean;
#define INF 0xfffffff
#define smin(a, b) a = min(a, b)
#define smax(a, b) a = max(a, b)
template<typename T>
inline void readInteger(T& u){
char x;
long long aFlag = ;
while(!isdigit((x = getchar())) && x != '-');
if(x == '-'){
x = getchar();
aFlag = -;
}
for(u = x - ''; isdigit((x = getchar())); u = (u << ) + (u << ) + x - '');
ungetc(x, stdin);
u *= aFlag;
} int n;
int *list;
int f[][];
int g[][];
int dp[][]; inline boolean init(){
readInteger(n);
if(n == ) return false;
list = new int[(const int)(n + )];
for(int i = ; i <= n; i++){
readInteger(list[i]);
}
return true;
} int *sum;
inline void getSum(){
sum = new int[(const int)(n + )];
sum[] = ;
for(int i = ; i <= n; i++)
sum[i] = sum[i - ] + list[i];
} inline void solve(){
memset(f, 0x7f, sizeof(f));
memset(g, 0x7f, sizeof(g));
for(int i = ; i <= n; i++) f[i][i] = g[i][i] = dp[i][i] = list[i];
for(int k = ; k < n; k++){
for(int i = ; i + k <= n; i++){
int j = i + k;
int m = ;
smin(m, f[i + ][j]);
smin(m, g[i][j - ]);
dp[i][j] = sum[j] - sum[i - ] - m;
f[i][j] = min(f[i + ][j], dp[i][j]);
g[i][j] = min(g[i][j - ], dp[i][j]);
}
}
printf("%d\n", dp[][n] * - sum[n]);
delete[] list;
delete[] sum;
} int main(){
while(init()){
getSum();
solve();
}
return ;
}

UVa 10891 Game of Sum - 动态规划的更多相关文章

  1. UVa 10891 - Game of Sum 动态规划,博弈 难度: 0

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  2. 09_Sum游戏(UVa 10891 Game of Sum)

    问题来源:刘汝佳<算法竞赛入门经典--训练指南> P67 例题28: 问题描述:有一个长度为n的整数序列,两个游戏者A和B轮流取数,A先取,每次可以从左端或者右端取一个或多个数,但不能两端 ...

  3. uva 10891 Game of Sum(区间dp)

    题目连接:10891 - Game of Sum 题目大意:有n个数字排成一条直线,然后有两个小伙伴来玩游戏, 每个小伙伴每次可以从两端(左或右)中的任意一端取走一个或若干个数(获得价值为取走数之和) ...

  4. [题解]UVa 10891 Game of Sum

    在游戏的任何时刻剩余的都是1 - n中的一个连续子序列.所以可以用dp[i][j]表示在第i个数到第j个数中取数,先手的玩家得到的最大的分值.因为两个人都很聪明,所以等于自己和自己下.基本上每次就都是 ...

  5. UVA 10891 Game of Sum

    题目大意就是有一个整数串,有两个人轮流取,每次可以取走一个前缀或后缀.两人都足够聪明,且都会使自己收益最大.求取完后先手比后手多多少. 每次我看见上面那句就会深感自己的愚笨无知. 所以来推推性质? 1 ...

  6. UVA 10891 Game of Sum(区间DP(记忆化搜索))

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  7. UVA - 10891 Game of Sum 区间DP

    题目连接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19461 Game of sum Description This ...

  8. UVA 10891 Game of Sum(DP)

    This is a two player game. Initially there are n integer numbers in an array and players A and B get ...

  9. 28.uva 10891 Game of Sum 记忆化dp

    这题和上次的通化邀请赛的那题一样,而且还是简化版本... 那题的题解      请戳这里 ... #include<cstdio> #include<algorithm> #i ...

随机推荐

  1. PHP AOP编程思想

    AOP思想(面向切面编程) 在应用开发中,我们经常发现需要很多功能,这些功能需要经常被分散在代码中的多个点上,但是这些点事实上跟实际业务没有任何关联.比如,在执行一些特殊任务之前需要确保用户是在登陆状 ...

  2. sublime安装install package

    通过 https://sublime.wbond.net/Package%20Control.sublime-package 下载packageControl文件 下载完成后,打开sublime te ...

  3. CentOS工作内容(四)主机禁ping

    CentOS工作内容(四)主机禁ping 用到的快捷键 tab 自动补齐(有不知道的吗) ctrl+a 移动到当前行的开头(a ahead) ctrl+u 删除(剪切)此处至开始所有内容 vim 末行 ...

  4. vue学习之npm

    任何一门计算机语言都包含了丰富的第三方库,npm就是JavaScript这门语言的第三方库管理工具,本文详细介绍了JavaScript的包管理工具,npm. 在计算机中安装好Node.js之后,默认已 ...

  5. spring boot上传 下载图片。

    https://blog.csdn.net/a625013/article/details/52414470 build.gradle buildscript { repositories { mav ...

  6. spring security积累

    使用数据库管理用户权限: Spring Security默认情况下需要两张表,用户表和权限表 create table users( username varchar_ignorecase(50) n ...

  7. R实现的最小二乘lsfit函数学习

    1.源码 function (x, y, wt = NULL, intercept = TRUE, tolerance = 1e-, yname = NULL) { x <- as.matrix ...

  8. mysql 开启慢查询

    linux启用MySQL慢查询 vim /etc/my.cnf [mysqld] slow-query-log = on slow_query_log_file = /var/log/slow_que ...

  9. 梯度消失与梯度爆炸 ==> 如何选择随机初始权重

    梯度消失与梯度爆炸 当训练神经网络时,导数或坡度有时会变得非常大或非常小,甚至以指数方式变小,这加大了训练的难度 这里忽略了常数项b.为了让z不会过大或者过小,思路是让w与n有关,且n越大,w应该越小 ...

  10. Java jdbc 操作数据库详解

    原文地址https://www.cnblogs.com/huguodong/p/5910859.html JDBC(Java Data Base Connectivity,java数据库连接)是一种用 ...