P4345 [SHOI2015]超能粒子炮·改

题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$

肯定要先拆开,不然怎么做呢(大雾)

把$C(n,i)$用$lucas$分解一下

于是原式$=\sum_{i=1}^{k}C(n/P,k/P)*C(n\%P,k\%P)\%P$

发现介个$k/P$是可以用整除分块搞的

于是拆开各个分块

$=C(n/P,0)*\sum_{i=0}^{P-1}C(n\%P,i)$

$+C(n/P,1)*\sum_{i=0}^{P-1}C(n\%P,i)$

$+...$

$+C(n/P,k/P-1)*\sum_{i=0}^{P-1}C(n\%P,i)$

$+C(n/P,k/P)*\sum_{i=0}^{k\%P}C(n\%P,i)$(最后一块不一定是整块,单独取出)

发现前面都有个$\sum_{i=0}^{P-1}C(n\%P,i)$,把它提出来

$=\sum_{j=0}^{k/P-1}C(n/P,j)*\sum_{i=0}^{P-1}C(n\%P,i)+C(n/P,k/P)*\sum_{i=0}^{k\%P}C(n\%P,i)$

根据$f$数组的定义再套进去

$=f[n/P][k/P-1]*f[n\%P][P-1]+C(n/P,k/P)*f[k\%P][n\%P]$

先预处理下标$<P$的$f$数组和组合数$C$,再递归一下,$C(n/P,k/P)$用$Lucas$定理搞

end.

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int P=;
int t;ll n,k,c[P+][P+],f[P+][P+];
ll lucas(ll a,ll b){
if(a<b) return ;
if(a==b) return ;
return b?lucas(a/P,b/P)*c[a%P][b%P]%P:;
}
ll F(ll a,ll b){
if(b<) return ;
if(!a||!b) return ;
if(a<P&&b<P) return f[a][b];
ll r1=f[a%P][P-]*F(a/P,b/P-)%P;
ll r2=lucas(a/P,b/P)*f[a%P][b%P]%P;
return (r1+r2)%P;
}
int main(){
for(int i=;i<=P;++i){
c[i][]=c[i][i]=;
for(int j=;j<i;++j)
c[i][j]=(c[i-][j-]+c[i-][j])%P;
}
for(int i=;i<=P;++i){
f[i][]=;
for(int j=;j<=P;++j)//注意f[P][P]以内的都要处理到
f[i][j]=(f[i][j-]+c[i][j])%P;
}
scanf("%d",&t);
while(t--){
scanf("%lld%lld",&n,&k);
printf("%lld\n",F(n,k));
}return ;
}

bzoj4591 / P4345 [SHOI2015]超能粒子炮·改的更多相关文章

  1. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  2. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

  3. 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

    题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  4. loj 2038 / 洛谷 P4345 [SHOI2015] 超能粒子炮・改 题解

    好玩的推式子 题目描述 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒子炮・改相比超能粒子炮,在威力上 ...

  5. P4345 [SHOI2015]超能粒子炮·改 Lucas

    \(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...

  6. [洛谷P4345][SHOI2015]超能粒子炮·改

    题目大意:给你$n,k$,求:$$\sum\limits_{i=0}^k\binom n i\pmod{2333}$$题解:令$p=2333,f(n,k)\equiv\sum\limits_{i=0} ...

  7. P4345 [SHOI2015]超能粒子炮·改

    传送门 看到数据和模数大小就知道要上 lucas 了 然后开始愉快地推公式: 答案为 $\sum _{i=0}^kC_{n}^{i}\ (mod\ 2333)$ 设 $f [ i ] [ j ] = ...

  8. 【bzoj4591】[Shoi2015]超能粒子炮·改

    设S(n,k)=Σ C(n,i) i=0..k 根据lucas定理可以得到 S(n,k) mod p = [ S(n/p,k/p-1)*S(n mod p,p-1)+C(n/p,k/p)*S(n mo ...

  9. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

随机推荐

  1. LAMP下安装zabbix流水

    一.安装zabbix (1)创建用户和组 [root@dbking zabbix-2.2.1]# groupadd zabbix [root@dbking zabbix-2.2.1]# useradd ...

  2. Oracle安装部署之RedHat安装Oracle11g_R2

    硬件配置 内存 :≥1G 硬盘空间:≥10G 上传oracle11g安装包: putty上用wcw用户登录,通过ftp服务上传oracle安装文件到/home/wcw目录下解压 #unzip linu ...

  3. hadoop HA架构安装部署(QJM HA)

    ###################HDFS High Availability Using the Quorum Journal Manager########################## ...

  4. 插入排序之python

    插入排序( Insert sort) 通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入: 由于不需要全部都比较完,所以排序速度优于冒泡和选择排序. #插入排序就像是斗地 ...

  5. https://pyobjc.readthedocs.io/en/latest/

    https://pyobjc.readthedocs.io/en/latest/ The PyObjC project aims to provide a bridge between the Pyt ...

  6. servlet输出请求头

    1.参考 Enumeration headerNames = req.getHeaderNames(); while(headerNames.hasMoreElements()) { String h ...

  7. Shell初学(三)传参

    一. 脚本代码:test.sh echo "Shell 传递参数实例!"; echo "执行的文件名:$0"; echo "第一个参数为:$1&quo ...

  8. Java-使用IO流对大文件进行分割和分割后的合并

    有的时候我们想要操作的文件很大,比如:我们想要上传一个大文件,但是收到上传文件大小的限制,无法上传,这是我们可以将一个大的文件分割成若干个小文件进行操作,然后再把小文件还原成源文件.分割后的每个小文件 ...

  9. leetcode & lintcode 题解

    刷题备忘录,for bug-free 招行面试题--求无序数组最长连续序列的长度,这里连续指的是值连续--间隔为1,并不是数值的位置连续 问题: 给出一个未排序的整数数组,找出最长的连续元素序列的长度 ...

  10. sklearn总览