Codeforces632E Thief in a Shop(NTT + 快速幂)
题目
Source
http://codeforces.com/contest/632/problem/E
Description
A thief made his way to a shop.
As usual he has his lucky knapsack with him. The knapsack can contain k objects. There are n kinds of products in the shop and an infinite number of products of each kind. The cost of one product of kind i is ai.
The thief is greedy, so he will take exactly k products (it's possible for some kinds to take several products of that kind).
Find all the possible total costs of products the thief can nick into his knapsack.
Input
The first line contains two integers n and k (1 ≤ n, k ≤ 1000) — the number of kinds of products and the number of products the thief will take.
The second line contains n integers ai (1 ≤ ai ≤ 1000) — the costs of products for kinds from 1 to n.
Output
Print the only line with all the possible total costs of stolen products, separated by a space. The numbers should be printed in the ascending order.
Sample Input
3 2
1 2 3
5 5
1 1 1 1 1
3 3
3 5 11
Sample Output
2 3 4 5 6
5
9 11 13 15 17 19 21 25 27 33
分析
题目大概说给有n种价值各一的物品,每种数量都无限多,问取出k个物品能取出的物品价值和的所有情况。
用母函数解,价值为指数、存不存在为系数,构造多项式求k次幂即可。
这自然想到FFT+快速幂求,这样时间复杂度才够。
FFT直接求的话结果的系数最大到达10001000太爆炸了,当然也可以求一次卷积后非0指数重新赋值成1;不过我想着开头一次DFT结尾一次IDFT这样更快、更轻松点,所以用NTT了。。
我NTT模数取1004535809 WA在20,取998244353 WA在21。。看样子是系数取模后变为0了,数据叼叼的。。于是我就两个模数都取,然后4000多ms险过了。。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 1048576 //const long long P=50000000001507329LL; // 190734863287 * 2 ^ 18 + 1
long long P=1004535809; // 479 * 2 ^ 21 + 1
//const long long P=998244353; // 119 * 2 ^ 23 + 1
const int G=3; long long mul(long long x,long long y){
return (x*y-(long long)(x/(long double)P*y+1e-3)*P+P)%P;
}
long long qpow(long long x,long long k,long long p){
long long ret=1;
while(k){
if(k&1) ret=mul(ret,x);
k>>=1;
x=mul(x,x);
}
return ret;
} long long wn[25];
void getwn(){
for(int i=1; i<=21; ++i){
int t=1<<i;
wn[i]=qpow(G,(P-1)/t,P);
}
} int len;
void NTT(long long y[],int op){
for(int i=1,j=len>>1,k; i<len-1; ++i){
if(i<j) swap(y[i],y[j]);
k=len>>1;
while(j>=k){
j-=k;
k>>=1;
}
if(j<k) j+=k;
}
int id=0;
for(int h=2; h<=len; h<<=1) {
++id;
for(int i=0; i<len; i+=h){
long long w=1;
for(int j=i; j<i+(h>>1); ++j){
long long u=y[j],t=mul(y[j+h/2],w);
y[j]=u+t;
if(y[j]>=P) y[j]-=P;
y[j+h/2]=u-t+P;
if(y[j+h/2]>=P) y[j+h/2]-=P;
w=mul(w,wn[id]);
}
}
}
if(op==-1){
for(int i=1; i<len/2; ++i) swap(y[i],y[len-i]);
long long inv=qpow(len,P-2,P);
for(int i=0; i<len; ++i) y[i]=mul(y[i],inv);
}
}
void Convolution(long long A[],long long B[],int n){
for(len=1; len<(n<<1); len<<=1);
for(int i=n; i<len; ++i){
A[i]=B[i]=0;
} NTT(A,1); NTT(B,1);
for(int i=0; i<len; ++i){
A[i]=mul(A[i],B[i]);
}
NTT(A,-1);
} long long A[MAXN],B[MAXN],C[MAXN];
long long cnt[MAXN]; int main(){
getwn();
int n,k,a;
scanf("%d%d",&n,&k);
int mx=0;
for(int i=0; i<n; ++i){
scanf("%d",&a);
++cnt[a];
mx=max(mx,a);
}
for(len=1; len<mx*k; len<<=1); memcpy(A,cnt,sizeof(cnt));
NTT(A,1);
memcpy(B,A,sizeof(B));
--k;
int tmp=k;
while(k){
if(k&1){
for(int i=0; i<len; ++i) B[i]=mul(A[i],B[i]);
}
for(int i=0; i<len; ++i) A[i]=mul(A[i],A[i]);
k>>=1;
}
NTT(B,-1); P=998244353;
getwn();
memcpy(A,cnt,sizeof(cnt));
NTT(A,1);
memcpy(C,A,sizeof(C));
k=tmp;
while(k){
if(k&1){
for(int i=0; i<len; ++i) C[i]=mul(A[i],C[i]);
}
for(int i=0; i<len; ++i) A[i]=mul(A[i],A[i]);
k>>=1;
}
NTT(C,-1); for(int i=0; i<len; ++i){
if(B[i] || C[i]) printf("%d ",i);
}
return 0;
}
Codeforces632E Thief in a Shop(NTT + 快速幂)的更多相关文章
- CF632E: Thief in a Shop(快速幂+NTT)(存疑)
A thief made his way to a shop. As usual he has his lucky knapsack with him. The knapsack can contai ...
- BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1155 Solved: 532[Submit][Statu ...
- 2018.12.31 bzoj3992: [SDOI2015]序列统计(生成函数+ntt+快速幂)
传送门 生成函数简单题. 题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1,a2,...as},所有数都在[0,m−1][0,m-1][0,m− ...
- Educational Codeforces Round 9 E. Thief in a Shop NTT
E. Thief in a Shop A thief made his way to a shop. As usual he has his lucky knapsack with him. Th ...
- bzoj 3992: [SDOI2015]序列统计【原根+生成函数+NTT+快速幂】
还是没有理解透原根--题目提示其实挺明显的,M是质数,然后1<=x<=M-1 这种计数就容易想到生成函数,但是生成函数是加法,而这里是乘法,所以要想办法变成加法 首先因为0和任何数乘都是0 ...
- BZOJ 3992 DP+NTT+快速幂
思路: 普通的DP很好想吧 f[i][j]+=f[i-1][j*s[k]] 前i个数 mod m=j 的个数 m是质数 模数是质数 这就很有趣了 那么我们就求出来原根 所有的数都取指数 搞出 ...
- codeforces632E. Thief in a Shop (dp)
A thief made his way to a shop. As usual he has his lucky knapsack with him. The knapsack can contai ...
- CF1096. G. Lucky Tickets(快速幂NTT)
All bus tickets in Berland have their numbers. A number consists of n digits (n is even). Only k dec ...
- bzoj 3992 [SDOI2015]序列统计——NTT(循环卷积&&快速幂)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 有转移次数.模M余数.方案数三个值,一看就是系数的地方放一个值.指数的地方放一个值.做 ...
随机推荐
- jsContext全局函数调用与对象函数调用、evaluateScript
evaluateScript:兼具js加载(生成具体的上下文)(函数与通用变量的加载),与函数执行的功能: 函数调用的方式有两种: 1)获取函数(对象),然后执行调用: [context[@" ...
- ES5语法
ES5新语法主要是体现在Object和.Array操作,同时涉及到JSON. Function.Date 和 String类型上. 1.Object ES5最大的特点是对象扩展很多方法. 新建对象:c ...
- boost之lexical_cast
第一次翻译,虽然是个很简单的函数介绍... 文件boost/lexical_cast.hpp中定义了此函数: namespace boost { class bad_lexical_cast; tem ...
- SHLVL 和 BASH_SUBSHELL 两个变量的区别
SHLVL 是记录多个 Bash 进程实例嵌套深度的累加器,而 BASH_SUBSHELL 是记录一个 Bash 进程实例中多个子 Shell(subshell)嵌套深度的累加器. 看不懂上面这句话不 ...
- JavaScript学习链接
Js中this的用法:http://www.cnblogs.com/RitaRichard/archive/2011/10/14/2212161.html JavaScript\ActionScrip ...
- R语言 ETL+统计+可视化
这篇文章...还是看文章吧 导入QQ群信息,进行ETL,将其规范化 计算哪些QQ发言较多 计算一天中哪些时段发言较多 计算统计内所有天的日发言量 setwd("C:/Users/liyi/D ...
- JavaScript事件处理程序
JavaScript中的事件处理程序主要分为3种: HTML事件处理程序: <script type="text/javascript"> // HTML事件处理程序 ...
- 表设置了自增后往里面插入不自增的id时的处理方法
SET IDENTITY_INSERT 表名 ON 中间写insert语句,但是这里必须把列名更上 SET IDENTITY_INSERT 表名 OFF
- ecshop编辑器FCKeditor修改成KindEditor编辑批量上传图片
ecshop一直使用的编辑器是fck,这个不用多说,相信很多朋友用的很悲剧吧,特别是图片不能批量上传图片. 今天小编就分享一下怎么换掉fck,放上实用的kindeditor,最新ecshop版 ...
- 超简单,安卓模拟器手动root
本文转载自:http://quantoubao.blog.163.com/blog/static/2083211702013870501987/ 安装Android SDK安卓模拟器的方法很简单,网上 ...