Codeforces 15E Triangles - 组合数学
Last summer Peter was at his granny's in the country, when a wolf attacked sheep in the nearby forest. Now he fears to walk through the forest, to walk round the forest, even to get out of the house. He explains this not by the fear of the wolf, but by a strange, in his opinion, pattern of the forest that has n levels, where n is an even number.
In the local council you were given an area map, where the granny's house is marked by point H, parts of dense forest are marked grey (see the picture to understand better).
After a long time at home Peter decided to yield to his granny's persuasions and step out for a breath of fresh air. Being prudent, Peter plans the route beforehand. The route, that Peter considers the most suitable, has the following characteristics:
- it starts and ends in the same place — the granny's house;
- the route goes along the forest paths only (these are the segments marked black in the picture);
- the route has positive length (to step out for a breath of fresh air Peter has to cover some distance anyway);
- the route cannot cross itself;
- there shouldn't be any part of dense forest within the part marked out by this route;
You should find the amount of such suitable oriented routes modulo 1000000009.
The example of the area map for n = 12 is given in the picture. Since the map has a regular structure, you can construct it for other n by analogy using the example.
The input data contain the only even integer n (2 ≤ n ≤ 106).
Output the only number — the amount of Peter's routes modulo 1000000009.
2
10
4
74
题目大意
首先,请仔细看图,找出图中的规律。
给定这个图的大小$n$,问有多少条有向路径满足:
- 路径长度为正
- 路径是沿着图中的边走的
- 路径不能自交
- 路径从H点开始,在H点结束
- 路径不能将黑色的格子圈住
答案模$10^{9}+9$。不是1e9 + 7。表示因为模数打错一发wa
通过手动画图,可以发现,路径主要有2种
这样的有向路径总共只有2条这样可以说是先在一侧乱窜,然后到点P,然后再到另一侧,最后在边上回到点H。
由于图是对称的,统计的是有向路径,所以只需要通过计算在一侧,点H到点P的合法的无向路径的数量然后再进行简单的运算就能够算出答案。
通过观察,可以发现,一旦从$l_{1}$上离开,就在到P点前不可能再回到$l_{1}$上。同时它也不可能继续向下走。
所以考虑从$l_{1}$上的某一点,向右或者向右下走一步然后到达点P 的方案数。
离开$l_{1}$后,就会沿大致向上的方向走,那么考虑在某个位置走到它的右上的方案数。
这个稍微分类讨论一下
如果在这种地方,如果可以向右上走1步,那么方案数为1,否则为0。
如果跑到了这里,设下凸的个数为$n$,它的方案数为$g_{n}$。(注意,以下讨论的方案数是指在保证路径合法的情况下)那么考虑点A到点C的方案数,显然为2。
然后考虑点C到点B的方案数和点D到点B的方案数,显然它们是1,至于点C到点D呢,根据定义可得它是$g_{n - 1}$。
然后想想,点A到点B的路径有哪几种?$A\rightarrow B,A\rightarrow C\rightarrow B, A\rightarrow C \rightarrow D \rightarrow B$
于是不难根据加法原理得到
$g_{n} = 2g_{n - 1} + 3$
然而有什么用呢?考虑刚离开$l_{1}$后到达的第一个点,那么它到点P的方案数就可以通过乘法原理计算。
紧接着就可以计算出在离开$l_{1}$上每个点后到达点P的方案数。然后把它们加起来就能够得到总的方案数,
假如成功算出了这样的总方案数为$s$,那么如何根据它来求答案呢?
容易根据加法和乘法原理得到:
$ans = 2s^{2} + 2$
说的很长,其实代码很短
Code
/**
* Codeforces
* Problem#15E
* Accepted
* Time: 60ms
* Memory: 2024k
*/
#include <bits/stdc++.h>
using namespace std; const int M = 1e9 + ; int n; inline void init() {
scanf("%d", &n);
} int sum = ;
inline void solve() {
for (int i = , last = -, P = ; i <= n; i++) {
if (i & ) {
last = ( * last + ) % M;
P = (P * 1ll * last) % M;
}
sum = (sum + P) % M;
}
sum = (sum << ) % M;
sum = (sum * 1ll * sum) % M;
sum = ((sum + ) << ) % M;
printf("%d", sum);
} int main() {
init();
solve();
return ;
}
Codeforces 15E Triangles - 组合数学的更多相关文章
- Codeforces 15E Triangles 【组合计数】
Codeforces 15E Triangles Last summer Peter was at his granny's in the country, when a wolf attacked ...
- Colorful Bricks CodeForces - 1081C ( 组合数学 或 DP )
On his free time, Chouti likes doing some housework. He has got one new task, paint some bricks in t ...
- Codeforces 528E Triangles 3000 - 计算几何
题目传送门 传送点I 传送点II 传送点III 题目大意 给定$n$的平面上的直线,保证没有三条直线共点,两条直线平行.问随机选出3条直线交成的三角形面积的期望. 显然$S=\frac{1}{2}ah ...
- Mysterious Crime CodeForces - 1043D (思维+组合数学)
Acingel is a small town. There was only one doctor here — Miss Ada. She was very friendly and nobody ...
- codeforces 630H (组合数学)
H - Benches Time Limit:500MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit S ...
- [Codeforces 15E] Triangle
Brief Introduction: 求从N出发,回到N且不包含任何黑色三角的路径数 Algorithm:假设从N点到第二层中间的节点M的路径数为k,易知总路径数为(k*k+1)*2 而从第第四层开 ...
- Educational Codeforces Round 32 Almost Identity Permutations CodeForces - 888D (组合数学)
A permutation p of size n is an array such that every integer from 1 to n occurs exactly once in thi ...
- Codeforces 990C (模拟+组合数学)
题面: 传送门 分析: 此题O(n2l)" role="presentation" style="position: relative;">O( ...
- Codeforces 1093D(染色+组合数学)
题面 传送门 题目大意:给出一个无向图,每个节点可以填1,2,3三个数中的一个 问有多少种填数方案,使两个相邻节点的数之和为奇数 分析 如果图中有奇环,一定无解 我们对图黑白染色,由于图可能不联通,记 ...
随机推荐
- Jmeter安装与配置
Jmeter下载与安装配置 1.下载地址:https://jmeter.apache.org/ Apache Jmeter首页,点击 Download Releases 然后,选择,安装版本,有li ...
- 14.ajax基础知识、用ajax做登录页面、用ajax验证用户名是否可用、ajax动态调用数据库
1.ajax的基础知识 ajax是结合了jquery.php等几种技术延伸出来的综合运用的技术,不是新的内容.ajax也是写在<script>标签里面的. 如果使用ajax一定是要有1个处 ...
- python爬虫-基础入门-爬取整个网站《3》
python爬虫-基础入门-爬取整个网站<3> 描述: 前两章粗略的讲述了python2.python3爬取整个网站,这章节简单的记录一下python2.python3的区别 python ...
- 使用promisify解决fs的回调地狱问题
- javaweb防止表单重新提交
一.前台验证 1.首先在from表单加一个隐藏域字段,设值为true.例如: <input type="hideen" name="tokenFlag" ...
- AngularJs ng-change事件/指令(转)
from:http://blog.csdn.net/u011127019/article/details/52564111 定义和用法 ng-change 指令用于告诉 AngularJS 在 HTM ...
- 代码审查Code Review
代码审查清单 常规项 代码能够工作么?它有没有实现预期的功能,逻辑是否正确等. 所有的代码是否简单易懂? 代码符合你所遵循的编程规范么?这通常包括大括号的位置,变量名和函数名,行的长度,缩进,格式和注 ...
- html5-样式的三种方式
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8&qu ...
- GUI相应鼠标事件
function varargout = GUI18(varargin) % GUI18 MATLAB code for GUI18.fig % GUI18, by itself, creates a ...
- Python+OpenCV图像处理(七)—— 滤波与模糊操作
过滤是信号和图像处理中基本的任务.其目的是根据应用环境的不同,选择性的提取图像中某些认为是重要的信息.过滤可以移除图像中的噪音.提取感兴趣的可视特征.允许图像重采样等等.频域分析将图像分成从低频到高频 ...