目标检测--SSD: Single Shot MultiBox Detector(2015)
SSD: Single Shot MultiBox Detector
作者: Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg
引用: Liu, Wei, et al. "SSD: Single Shot MultiBox Detector." arXiv preprint arXiv:1512.02325 (2015).
引用次数: 23(Google Scholar,by 2016/11/28).
项目地址: https://github.com/weiliu89/caffe/tree/ssd
主流的目标检测算法一般首先是一个region proposal的过程,即提出候选区域! SSD把这个过程取消了!!! 这是检测的速度加快的重要原因!
SSD网络包含两个部分,第一部分是基础网络(就是用于图像分类的网络,但是softmax分类层裁掉了); 第二部分是本文自己设计的网络,主要实现下面的目的: 使用多尺度特征maps进行检测.
创新点1: 使用多尺度特征maps进行目标检测
何凯明的多级pooling用的是conv5的特征maps,在这些特征maps来提取region proposals(bounding boxes从原图上映射到特征maps上),充分利用这些特征maps; 现在好像论文渐渐有这种趋势,开始使用多个特征maps上的特征,而不仅仅是使用最后一级的! 本文的SSD就是采用个特征maps,称之为多尺度特征maps.
创新点2: 使用卷积预测器进行目标检测
创新点3: 默认的boxes以及aspect ratios
这里将一些默认的bounding boxes和每个特征图cell相关联!
1. 图像经过CNN,得到图像的特征maps: A
2. 对这些特征maps进行多级提取特征maps: B
3. 在每个特征map中各个位置location,每个location对应多个default boxes
4. 计算每个default boxes的loc offset以及class score
5. 根据default box以及loc offset计算区域位置P,在根据class score计算每个default box的损失函数,累加得到最终的损失函数.
使用了图像的各个尺度下各个位置的特征进行了回归,既保证了速度,也保证了准确度
计算使用了多个尺度的特征maps,那就来看看到底有哪些尺度的特征maps: 输入图像的大小为:input:3*300*300, 使用的各级卷积层为: conv4_3:512*38*38, conv7:1024*19*19, conv8_2:512*10*10, conv9_2:256*5*5, conv10_2:256*3*3, Avg Pooling:256*1*1,这些卷积层从大到小逐级递减,这样的话就是多尺度检测.
2 The Single Shot Detector (SSD)
图1. SSD框架. GT是Ground Truth的缩写. (a) 训练的时候SSD仅仅需要一张输入图像以及每个待识别目标的GT矩形框. 使用卷积的方式, 我们构造一个具有不同aspect ratios的默认矩形框小集合(如: 4个小矩形框), 用这几个boxes在几个特征maps(这几个特征maps尺度不同, 如8x8(图b), 4x4(图c))的每个位置进行估计. 对于每个默认的box, 我们预测两个指标: 1) 形状偏移; 2) 对box所覆盖区域判定为每个类别(c1,c2,...,cp)的概率值.
2.1 Model
原理概括: SSD基于一个前向传播CNN, 可以产生一系列固定大小的bounding boxes, 以及每个box包含每个目标(c1,c2,...,cp)的可能性(score); 然后进行一个非极大值抑制, 得到最终的predictions. SSD主要由两部分组成: 基础网络(用于图像分类的标准网络,去掉了后面用于分类的层, VGG-16, 将fc6和fc7去掉) + 辅助的网络结构(见图2中的Extra Feature Layers, 加了5层卷积层, 用作多尺度采样).
多尺度特征 maps for detection
SSD在基础的网络结构(VGG-16)后面添加了额外的卷积层(见图2中的Extra Feature Layers), 这些卷积层的大小逐级递减(看图2中的: 19x19, 10x10, 5x5, 3x3, 1x1), 这样的话, 可以在多尺度下面进行预测.
卷积 predictors for detection
对于每个添加的特征层, 可以使用一组卷积滤波器(如图2中对19x19x1024的卷积maps使用3x3x1024的卷积核, 产生的predictions就是归属类别的一个得分)
Default boxes and aspect ratios
2.2 Training
用于检测的多尺度特征图: 300x300(输入图像大小), 38x38, 19x19, 10x10, 5x5, 3x3, 1x1.
Convolutional predictors for detection: 对于每个添加的特征层, 我们使用一组卷积滤波器, 可以得到一组固定数目的目标检测的预测, 对于一个尺寸为mxn的p通道特征层, 我们使用一个3x3xp的小核作为一个基础元素来预测一个坑的检测的信息(类别信息, 位置信息)
图像经过卷积网络, 得到图像的base特征A; 再对这个特征进行多层级的提取特征图B; 在每个特征图中的各个位置, 每个location对应多个default box; 计算每个默认box的loc offset以及class score. 根据默认box以及loc offset计算区域位置P, 再根据class score, 计算每个默认box的损失函数, 累加得到最后的损失函数.
使用图像在各个只读下的各个位置的特征进行回归, 既保证了速度, 也保证了准确度.
目标检测--SSD: Single Shot MultiBox Detector(2015)的更多相关文章
- 【计算机视觉】目标检测之ECCV2016 - SSD Single Shot MultiBox Detector
本文转载自: http://www.cnblogs.com/lillylin/p/6207292.html SSD论文阅读(Wei Liu--[ECCV2016]SSD Single Shot Mul ...
- SSD: Single Shot MultiBox Detector
By Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexande ...
- 深度学习论文翻译解析(十四):SSD: Single Shot MultiBox Detector
论文标题:SSD: Single Shot MultiBox Detector 论文作者:Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Sz ...
- SSD(Single Shot MultiBox Detector)的安装配置和运行
下文图文介绍转自watersink的博文SSD(Single Shot MultiBox Detector)不得不说的那些事. 该方法出自2016年的一篇ECCV的oral paper,SSD: Si ...
- 机器视觉:SSD Single Shot MultiBox Detector
今天介绍目标检测中非常著名的一个框架 SSD,与之前的 R-CNN 系列的不同,而且速度比 YOLO 更快. SSD 的核心思想是将不同尺度的 feature map 分成很多固定大小的 box,然后 ...
- 论文笔记 SSD: Single Shot MultiBox Detector
转载自:https://zhuanlan.zhihu.com/p/33544892 前言 目标检测近年来已经取得了很重要的进展,主流的算法主要分为两个类型(参考RefineDet):(1)two-st ...
- SSD: Single Shot MultiBox Detector 编译方法总结
SSD是一个基于单网络的目标检测框架,它是基于caffe实现的,所以下面的教程是基于已经编译好的caffe进行编译的. caffe的编译可以参考官网 caffe Installation Instal ...
- [论文理解]SSD:Single Shot MultiBox Detector
SSD:Single Shot MultiBox Detector Intro SSD是一套one-stage算法实现目标检测的框架,速度很快,在当时速度超过了yolo,精度也可以达到two-stag ...
- 论文阅读笔记二十九:SSD: Single Shot MultiBox Detector(ECCV2016)
论文源址:https://arxiv.org/abs/1512.02325 tensorflow代码:https://github.com/balancap/SSD-Tensorflow 摘要 SSD ...
随机推荐
- java NIO 直接与非直接缓冲区
ByteBuffer有两个创建缓冲区的方法:static ByteBuffer allocate(int capacity)static ByteBuffer allocateDirect(int c ...
- Java基础-Eclipse第三方安装包管理工具之Maven
Java基础-Eclipse第三方安装包管理工具之Maven 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 玩过Linux的小伙伴应该都知道yum吧,我们只要把搭建好的yum仓库配 ...
- Swift学习笔记7--访问控制
在Swift语言中,访问修饰符有三种,分别为private,internal和public.同时,Swift对于访问权限的控制,不是基于类的,而是基于文件的.其区别如下: 1,private priv ...
- Nginx的alias的用法及与root的区别
以前只知道Nginx的location块中的root用法,用起来总是感觉满足不了自己的一些想法.然后终于发现了alias这个东西. 先看toot的用法 location /request_path/i ...
- impala记录-安装kudu和impala
1.配置/etc/yum.repos.d clouder-kudu.repo [cloudera-kudu]# Packages for Cloudera's Distribution for kud ...
- Kafka记录-Kafka简介与单机部署测试
1.Kafka简介 kafka-分布式发布-订阅消息系统,开发语言-Scala,协议-仿AMQP,不支持事务,支持集群,支持负载均衡,支持zk动态扩容 2.Kafka的架构组件 1.话题(Topic) ...
- rabbitmq用户授权
创建用户 rabbitmqctl add_user kye01 123456 设置用户角色 rabbitmqctl set_user_tags kye01 monitoring 查看用户清单 rabb ...
- JavaSE回顾及巩固的自学之路(四)——————方法和数组,面向对象
今天是2018.03.31,emmmmmm.好像距离上一次写Javase回顾总结已经好久好久过去,差一点就以为要停更了,哈哈哈. 其实呢,最近是真的好忙(额,这段时间觉得自己一直在学习) ...
- emacs(考场+平时)配置方案
考场配置: ;;在配置后面会对语句逐一解释的 (global-set-key (kbd "C-z") 'undo) (global-set-key (kbd "RET&q ...
- proxysql 系列 ~ 总揽概括
一 简介: proxysql相关知识汇总 二 proxysql 相关报错 1 proxysql 报错 too many connections 分析 proxysql关于连接池的参数 ...