目录(?)[+]

 

1.搜狗实验室数据集:

http://www.sogou.com/labs/dl/p.html

互联网图片库来自sogou图片搜索所索引的部分数据。其中收集了包括人物、动物、建筑、机械、风景、运动等类别,总数高达2,836,535张图片。对于每张图片,数据集中给出了图片的原图、缩略图、所在网页以及所在网页中的相关文本。200多G

2

http://www.imageclef.org/

IMAGECLEF致力于位图片相关领域提供一个基准(检索、分类、标注等等) Cross Language Evaluation Forum (CLEF) 。从2003年开始每年举行一次比赛.

http://staff.science.uva.nl/~xirong/index.php?n=Main.Dataset

3

Xiaorong Li 维护的数据集。PhD ,Intelligent Systems Lab Amsterdam.research on video and image retrieval.

  • Flickr-3.5M: A collection of 3.5 million social-tagged images.

     
  • Social20: A ground-truth set for tag-based social image retrieval.
     
  • Biconcepts2012test: A ground-truth set for retrieving bi-concepts (concept pairs) in unlabeled images.
     
  • neg4free: A set of negative examples automatically harvested from social-tagged images for 20 PASCAL VOC concepts.
4
wikipedia featured articles 函数图片(以及特征)以及对应的wiki文本。可以看看文章A New Approach to Cross-Modal Multimedia Retrieval,还有一批文章On the Role of Correlation and Abstraction in Cross-Modal Multimedia Retrieval不过还没有下载链接

http://www.svcl.ucsd.edu/projects/crossmodal/

5

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

To our knowledge, this is the largest real-world web image dataset comprising over 269,000 images with over 5,000 user-provided tags, and ground-truth of 81 concepts for the entire dataset. The dataset is much larger than the popularly available Corel and Caltech 101 datasets. Though some datasets comprise over 3 million images, they only have ground-truth for a small fraction of images. Our proposed NUS-WIDE dataset has the ground-truth for the entire dataset.

6.

http://www.cs.washington.edu/research/imagedatabase/

7.

http://lear.inrialpes.fr/~jegou/data.php

Jegou的数据集,不过Jegou是专门做CBIR的,图像有ground truth,没有标注。

8.

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/

vgg的osford building dataset。也是专门CBIR的数据。

9.

http://acmmm13.org/submissions/call-for-multimedia-grand-challenge-solutions/msr-bing-grand-challenge-on-image-retrieval-scientific-track/

The dataset for the Microsoft Image Grand Challenge on Image Retrieval

另外介绍cvpaper上的整理的数据集

http://www.cvpapers.com/index.html

Participate in Reproducible Research

Detection

PASCAL VOC 2009 dataset
Classification/Detection Competitions, Segmentation Competition, Person Layout Taster Competition datasets
LabelMe dataset
LabelMe is a web-based image annotation tool that allows researchers to label images and share the annotations with the rest of the community. If you use the database, we only ask that you contribute to it, from time to time, by using the labeling tool.
BioID Face Detection Database
1521 images with human faces, recorded under natural conditions, i.e. varying illumination and complex background. The eye positions have been set manually.
CMU/VASC & PIE Face dataset
Yale Face dataset
Caltech
Cars, Motorcycles, Airplanes, Faces, Leaves, Backgrounds
Caltech 101
Pictures of objects belonging to 101 categories
Caltech 256
Pictures of objects belonging to 256 categories
Daimler Pedestrian Detection Benchmark
15,560 pedestrian and non-pedestrian samples (image cut-outs) and 6744 additional full images not containing pedestrians for bootstrapping. The test set contains more than 21,790 images with 56,492 pedestrian labels (fully visible or partially occluded), captured from a vehicle in urban traffic.
MIT Pedestrian dataset
CVC Pedestrian Datasets
CVC Pedestrian Datasets
CBCL Pedestrian Database
MIT Face dataset
CBCL Face Database
MIT Car dataset
CBCL Car Database
MIT Street dataset
CBCL Street Database
INRIA Person Data Set
A large set of marked up images of standing or walking people
INRIA car dataset
A set of car and non-car images taken in a parking lot nearby INRIA
INRIA horse dataset
A set of horse and non-horse images
H3D Dataset
3D skeletons and segmented regions for 1000 people in images
HRI RoadTraffic dataset
A large-scale vehicle detection dataset
BelgaLogos
10000 images of natural scenes, with 37 different logos, and 2695 logos instances, annotated with a bounding box.
FlickrBelgaLogos
10000 images of natural scenes grabbed on Flickr, with 2695 logos instances cut and pasted from the BelgaLogos dataset.
FlickrLogos-32
The dataset FlickrLogos-32 contains photos depicting logos and is meant for the evaluation of multi-class logo detection/recognition as well as logo retrieval methods on real-world images. It consists of 8240 images downloaded from Flickr.
TME Motorway Dataset
30000+ frames with vehicle rear annotation and classification (car and trucks) on motorway/highway sequences. Annotation semi-automatically generated using laser-scanner data. Distance estimation and consistent target ID over time available.
PHOS (Color Image Database for illumination invariant feature selection)
Phos is a color image database of 15 scenes captured under different illumination conditions. More particularly, every scene of the database contains 15 different images: 9 images captured under various strengths of uniform illumination, and 6 images under different degrees of non-uniform illumination. The images contain objects of different shape, color and texture and can be used for illumination invariant feature detection and selection.
CaliforniaND: An Annotated Dataset For Near-Duplicate Detection In Personal Photo Collections
California-ND contains 701 photos taken directly from a real user's personal photo collection, including many challenging non-identical near-duplicate cases, without the use of artificial image transformations. The dataset is annotated by 10 different subjects, including the photographer, regarding near duplicates.

Classification

PASCAL VOC 2009 dataset
Classification/Detection Competitions, Segmentation Competition, Person Layout Taster Competition datasets
Caltech
Cars, Motorcycles, Airplanes, Faces, Leaves, Backgrounds
Caltech 101
Pictures of objects belonging to 101 categories
Caltech 256
Pictures of objects belonging to 256 categories
ETHZ Shape Classes
A dataset for testing object class detection algorithms. It contains 255 test images and features five diverse shape-based classes (apple logos, bottles, giraffes, mugs, and swans).
Flower classification data sets
17 Flower Category Dataset
Animals with attributes
A dataset for Attribute Based Classification. It consists of 30475 images of 50 animals classes with six pre-extracted feature representations for each image.
Stanford Dogs Dataset
Dataset of 20,580 images of 120 dog breeds with bounding-box annotation, for fine-grained image categorization.

Recognition

Face and Gesture Recognition Working Group FGnet
Face and Gesture Recognition Working Group FGnet
Feret
Face and Gesture Recognition Working Group FGnet
PUT face
9971 images of 100 people
Labeled Faces in the Wild
A database of face photographs designed for studying the problem of unconstrained face recognition
Urban scene recognition
Traffic Lights Recognition, Lara's public benchmarks.
PubFig: Public Figures Face Database
The PubFig database is a large, real-world face dataset consisting of 58,797 images of 200 people collected from the internet. Unlike most other existing face datasets, these images are taken in completely uncontrolled situations with non-cooperative subjects.
YouTube Faces
The data set contains 3,425 videos of 1,595 different people. The shortest clip duration is 48 frames, the longest clip is 6,070 frames, and the average length of a video clip is 181.3 frames.
MSRC-12: Kinect gesture data set
The Microsoft Research Cambridge-12 Kinect gesture data set consists of sequences of human movements, represented as body-part locations, and the associated gesture to be recognized by the system.
QMUL underGround Re-IDentification (GRID) Dataset
This dataset contains 250 pedestrian image pairs + 775 additional images captured in a busy underground station for the research on person re-identification.
Person identification in TV series
Face tracks, features and shot boundaries from our latest CVPR 2013 paper. It is obtained from 6 episodes of Buffy the Vampire Slayer and 6 episodes of Big Bang Theory.
ChokePoint Dataset
ChokePoint is a video dataset designed for experiments in person identification/verification under real-world surveillance conditions. The dataset consists of 25 subjects (19 male and 6 female) in portal 1 and 29 subjects (23 male and 6 female) in portal 2.

Tracking

BIWI Walking Pedestrians dataset
Walking pedestrians in busy scenarios from a bird eye view
"Central" Pedestrian Crossing Sequences
Three pedestrian crossing sequences
Pedestrian Mobile Scene Analysis
The set was recorded in Zurich, using a pair of cameras mounted on a mobile platform. It contains 12'298 annotated pedestrians in roughly 2'000 frames.
Head tracking
BMP image sequences.
KIT AIS Dataset
Data sets for tracking vehicles and people in aerial image sequences.
MIT Traffic Data Set
MIT traffic data set is for research on activity analysis and crowded scenes. It includes a traffic video sequence of 90 minutes long. It is recorded by a stationary camera.

Segmentation

Image Segmentation with A Bounding Box Prior dataset
Ground truth database of 50 images with: Data, Segmentation, Labelling - Lasso, Labelling - Rectangle
PASCAL VOC 2009 dataset
Classification/Detection Competitions, Segmentation Competition, Person Layout Taster Competition datasets
Motion Segmentation and OBJCUT data
Cows for object segmentation, Five video sequences for motion segmentation
Geometric Context Dataset
Geometric Context Dataset: pixel labels for seven geometric classes for 300 images
Crowd Segmentation Dataset
This dataset contains videos of crowds and other high density moving objects. The videos are collected mainly from the BBC Motion Gallery and Getty Images website. The videos are shared only for the research purposes. Please consult the terms and conditions of use of these videos from the respective websites.
CMU-Cornell iCoseg Dataset
Contains hand-labelled pixel annotations for 38 groups of images, each group containing a common foreground. Approximately 17 images per group, 643 images total.
Segmentation evaluation database
200 gray level images along with ground truth segmentations
The Berkeley Segmentation Dataset and Benchmark
Image segmentation and boundary detection. Grayscale and color segmentations for 300 images, the images are divided into a training set of 200 images, and a test set of 100 images.
Weizmann horses
328 side-view color images of horses that were manually segmented. The images were randomly collected from the WWW.
Saliency-based video segmentation with sequentially updated priors
10 videos as inputs, and segmented image sequences as ground-truth

Foreground/Background

Wallflower Dataset
For evaluating background modelling algorithms
Foreground/Background Microsoft Cambridge Dataset
Foreground/Background segmentation and Stereo dataset from Microsoft Cambridge
Stuttgart Artificial Background Subtraction Dataset
The SABS (Stuttgart Artificial Background Subtraction) dataset is an artificial dataset for pixel-wise evaluation of background models.

Saliency Detection (source)

AIM
120 Images / 20 Observers (Neil D. B. Bruce and John K. Tsotsos 2005).
LeMeur
27 Images / 40 Observers (O. Le Meur, P. Le Callet, D. Barba and D. Thoreau 2006).
Kootstra
100 Images / 31 Observers (Kootstra, G., Nederveen, A. and de Boer, B. 2008).
DOVES
101 Images / 29 Observers (van der Linde, I., Rajashekar, U., Bovik, A.C., Cormack, L.K. 2009).
Ehinger
912 Images / 14 Observers (Krista A. Ehinger, Barbara Hidalgo-Sotelo, Antonio Torralba and Aude Oliva 2009).
NUSEF
758 Images / 75 Observers (R. Subramanian, H. Katti, N. Sebe1, M. Kankanhalli and T-S. Chua 2010).
JianLi
235 Images / 19 Observers (Jian Li, Martin D. Levine, Xiangjing An and Hangen He 2011).
Extended Complex Scene Saliency Dataset (ECSSD)
ECSSD contains 1000 natural images with complex foreground or background. For each image, the ground truth mask of salient object(s) is provided.

Video Surveillance

CAVIAR
For the CAVIAR project a number of video clips were recorded acting out the different scenarios of interest. These include people walking alone, meeting with others, window shopping, entering and exitting shops, fighting and passing out and last, but not least, leaving a package in a public place.
ViSOR
ViSOR contains a large set of multimedia data and the corresponding annotations.

Multiview

3D Photography Dataset
Multiview stereo data sets: a set of images
Multi-view Visual Geometry group's data set
Dinosaur, Model House, Corridor, Aerial views, Valbonne Church, Raglan Castle, Kapel sequence
Oxford reconstruction data set (building reconstruction)
Oxford colleges
Multi-View Stereo dataset (Vision Middlebury)
Temple, Dino
Multi-View Stereo for Community Photo Collections
Venus de Milo, Duomo in Pisa, Notre Dame de Paris
IS-3D Data
Dataset provided by Center for Machine Perception
CVLab dataset
CVLab dense multi-view stereo image database
3D Objects on Turntable
Objects viewed from 144 calibrated viewpoints under 3 different lighting conditions
Object Recognition in Probabilistic 3D Scenes
Images from 19 sites collected from a helicopter flying around Providence, RI. USA. The imagery contains approximately a full circle around each site.
Multiple cameras fall dataset
24 scenarios recorded with 8 IP video cameras. The first 22 first scenarios contain a fall and confounding events, the last 2 ones contain only confounding events.

Action

UCF Sports Action Dataset
This dataset consists of a set of actions collected from various sports which are typically featured on broadcast television channels such as the BBC and ESPN. The video sequences were obtained from a wide range of stock footage websites including BBC Motion gallery, and GettyImages.
UCF Aerial Action Dataset
This dataset features video sequences that were obtained using a R/C-controlled blimp equipped with an HD camera mounted on a gimbal.The collection represents a diverse pool of actions featured at different heights and aerial viewpoints. Multiple instances of each action were recorded at different flying altitudes which ranged from 400-450 feet and were performed by different actors.
UCF YouTube Action Dataset
It contains 11 action categories collected from YouTube.
Weizmann action recognition
Walk, Run, Jump, Gallop sideways, Bend, One-hand wave, Two-hands wave, Jump in place, Jumping Jack, Skip.
UCF50
UCF50 is an action recognition dataset with 50 action categories, consisting of realistic videos taken from YouTube.
ASLAN
The Action Similarity Labeling (ASLAN) Challenge.
MSR Action Recognition Datasets
The dataset was captured by a Kinect device. There are 12 dynamic American Sign Language (ASL) gestures, and 10 people. Each person performs each gesture 2-3 times.
KTH Recognition of human actions
Contains six types of human actions (walking, jogging, running, boxing, hand waving and hand clapping) performed several times by 25 subjects in four different scenarios: outdoors, outdoors with scale variation, outdoors with different clothes and indoors.
Hollywood-2 Human Actions and Scenes dataset
Hollywood-2 datset contains 12 classes of human actions and 10 classes of scenes distributed over 3669 video clips and approximately 20.1 hours of video in total.
Collective Activity Dataset
This dataset contains 5 different collective activities : crossing, walking, waiting, talking, and queueing and 44 short video sequences some of which were recorded by consumer hand-held digital camera with varying view point.
Olympic Sports Dataset
The Olympic Sports Dataset contains YouTube videos of athletes practicing different sports.
SDHA 2010
Surveillance-type videos
VIRAT Video Dataset
The dataset is designed to be realistic, natural and challenging for video surveillance domains in terms of its resolution, background clutter, diversity in scenes, and human activity/event categories than existing action recognition datasets.
HMDB: A Large Video Database for Human Motion Recognition
Collected from various sources, mostly from movies, and a small proportion from public databases, YouTube and Google videos. The dataset contains 6849 clips divided into 51 action categories, each containing a minimum of 101 clips.
Stanford 40 Actions Dataset
Dataset of 9,532 images of humans performing 40 different actions, annotated with bounding-boxes.
50Salads dataset
Fully annotated dataset of RGB-D video data and data from accelerometers attached to kitchen objects capturing 25 people preparing two mixed salads each (4.5h of annotated data). Annotated activities correspond to steps in the recipe and include phase (pre-/ core-/ post) and the ingredient acted upon.

Human pose/Expression

AFEW (Acted Facial Expressions In The Wild)/SFEW (Static Facial Expressions In The Wild)
Dynamic temporal facial expressions data corpus consisting of close to real world environment extracted from movies.
ETHZ CALVIN Dataset

Image stitching

IPM Vision Group Image Stitching datasets
Images and parameters for registeration

Medical

VIP Laparoscopic / Endoscopic Dataset
Collection of endoscopic and laparoscopic (mono/stereo) videos and images

Misc

Zurich Buildings Database
ZuBuD Image Database contains over 1005 images about Zurich city building.
Color Name Data Sets
Mall dataset
The mall dataset was collected from a publicly accessible webcam for crowd counting and activity profiling research.
QMUL Junction Dataset
A busy traffic dataset for research on activity analysis and behaviour understanding.

CVOnline的数据集

http://homepages.inf.ed.ac.uk/rbf/CVonline/CVentry.htm

Index by Topic

  1. Action Databases
  2. Biological/Medical
  3. Face Databases
  4. Fingerprints
  5. General Images
  6. Gesture Databases
  7. Image, Video and Shape Database Retrieval
  8. Object Databases
  9. People, Pedestrian, Eye/Iris, Template Detection/Tracking Databases
  10. Segmentation
  11. Surveillance
  12. Textures
  13. General Videos
  14. Other Collection Pages
  15. Miscellaneous Topics

Action Databases

  1. 50 Salads - fully annotated 4.5 hour dataset of RGB-D video + accelerometer data, capturing 25 people preparing two mixed salads each (Dundee University, Sebastian Stein)
  2. ASLAN Action similarity labeling challenge database (Orit Kliper-Gross)
  3. Berkeley MHAD: A Comprehensive Multimodal Human Action Database (Ferda Ofli)
  4. BEHAVE Interacting Person Video Data with markup (Scott Blunsden, Bob Fisher, Aroosha Laghaee)
  5. CVBASE06: annotated sports videos (Janez Pers)
  6. G3D - synchronised video, depth and skeleton data for 20 gaming actions captured with Microsoft Kinect (Victoria Bloom)
  7. Hollywood 3D - 650 3D action recognition in the wild videos, 14 action classes (Simon Hadfield)
  8. Human Actions and Scenes Dataset (Marcin Marszalek, Ivan Laptev, Cordelia Schmid)
  9. HumanEva: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion (Brown University)
  10. i3DPost Multi-View Human Action Datasets (Hansung Kim)
  11. i-LIDS video event image dataset (Imagery library for intelligent detection systems) (Paul Hosner)
  12. INRIA Xmas Motion Acquisition Sequences (IXMAS) (INRIA)
  13. JPL First-Person Interaction dataset - 7 types of human activity videos taken from a first-person viewpoint (Michael S. Ryoo, JPL)
  14. KTH human action recognition database (KTH CVAP lab)
  15. LIRIS human activities dataset - 2 cameras, annotated, depth images (Christian Wolf, et al)
  16. MuHAVi - Multicamera Human Action Video Data (Hossein Ragheb)
  17. Oxford TV based human interactions (Oxford Visual Geometry Group)
  18. Rochester Activities of Daily Living Dataset (Ross Messing)
  19. SDHA Semantic Description of Human Activities 2010 contest - aerial views (Michael S. Ryoo, J. K. Aggarwal, Amit K. Roy-Chowdhury)
  20. SDHA Semantic Description of Human Activities 2010 contest - Human Interactions (Michael S. Ryoo, J. K. Aggarwal, Amit K. Roy-Chowdhury)
  21. TUM Kitchen Data Set of Everyday Manipulation Activities (Moritz Tenorth, Jan Bandouch)
  22. TV Human Interaction Dataset (Alonso Patron-Perez)
  23. Univ of Central Florida - Feature Films Action Dataset (Univ of Central Florida)
  24. Univ of Central Florida - YouTube Action Dataset (sports) (Univ of Central Florida)
  25. Univ of Central Florida - 50 Action Category Recognition in Realistic Videos (3 GB) (Kishore Reddy)
  26. UCF 101 action dataset 101 action classes, over 13k clips and 27 hours of video data (Univ of Central Florida)
  27. Univ of Central Florida - Sports Action Dataset (Univ of Central Florida)
  28. Univ of Central Florida - ARG Aerial camera, Rooftop camera and Ground camera (UCF Computer Vision Lab)
  29. UCR Videoweb Multi-camera Wide-Area Activities Dataset (Amit K. Roy-Chowdhury)
  30. Verona Social interaction dataset (Marco Cristani)
  31. Videoweb (multicamera) Activities Dataset (B. Bhanu, G. Denina, C. Ding, A. Ivers, A. Kamal, C. Ravishankar, A. Roy-Chowdhury, B. Varda)
  32. ViHASi: Virtual Human Action Silhouette Data (userID: VIHASI password: virtual$virtual) (Hossein Ragheb, Kingston University)
  33. WorkoutSU-10 Kinect dataset for exercise actions (Ceyhun Akgul)
  34. YouCook - 88 open-source YouTube cooking videos with annotations (Jason Corso)
  35. WVU Multi-view action recognition dataset (Univ. of West Virginia)

Biological/Medical

  1. Computed Tomography Emphysema Database (Lauge Sorensen)
  2. Dermoscopy images (Eric Ehrsam)
  3. DIADEM: Digital Reconstruction of Axonal and Dendritic Morphology Competition (Allen Institute for Brain Science et al)
  4. DIARETDB1 - Standard Diabetic Retinopathy Database (Lappeenranta Univ of Technology)
  5. DRIVE: Digital Retinal Images for Vessel Extraction (Univ of Utrecht)
  6. MiniMammographic Database (Mammographic Image Analysis Society)
  7. MIT CBCL Automated Mouse Behavior Recognition datasets (Nicholas Edelman)
  8. Retinal fundus images - Ground truth of vascular bifurcations and crossovers (Univ of Groningen)
  9. Spine and Cardiac data (Digital Imaging Group of London Ontario, Shuo Li)
  10. Univ of Central Florida - DDSM: Digital Database for Screening Mammography (Univ of Central Florida)
  11. VascuSynth - 120 3D vascular tree like structures with ground truth (Mengliu Zhao, Ghassan Hamarneh)
  12. York Cardiac MRI dataset (Alexander Andreopoulos)

Face Databases

  1. 3D Mask Attack Database (3DMAD) - 76500 frames of 17 persons using Kinect RGBD with eye positions (Sebastien Marcel)
  2. Audio-visual database for face and speaker recognition (Mobile Biometry MOBIO http://www.mobioproject.org/)
  3. BANCA face and voice database (Univ of Surrey)
  4. Binghampton Univ 3D static and dynamic facial expression database (Lijun Yin, Peter Gerhardstein and teammates)
  5. BioID face database (BioID group)
  6. Biwi 3D Audiovisual Corpus of Affective Communication - 1000 high quality, dynamic 3D scans of faces, recorded while pronouncing a set of English sentences.
  7. CMU Facial Expression Database (CMU/MIT)
  8. CMU/MIT Frontal Faces (CMU/MIT)
  9. CMU/MIT Frontal Faces (CMU/MIT)
  10. CMU Pose, Illumination, and Expression (PIE) Database (Simon Baker)
  11. CSSE Frontal intensity and range images of faces (Ajmal Mian)
  12. Face Recognition Grand Challenge datasets (FRVT - Face Recognition Vendor Test)
  13. FaceTracer Database - 15,000 faces (Neeraj Kumar, P. N. Belhumeur, and S. K. Nayar)
  14. FDDB: Face Detection Data set and Benchmark - studying unconstrained face detection (University of Massachusetts Computer Vision Laboratory)
  15. FG-Net Aging Database of faces at different ages (Face and Gesture Recognition Research Network)
  16. Facial Recognition Technology (FERET) Database (USA National Institute of Standards and Technology)
  17. Hong Kong Face Sketch Database
  18. Japanese Female Facial Expression (JAFFE) Database (Michael J. Lyons)
  19. LFW: Labeled Faces in the Wild - unconstrained face recognition. Re-labeled Faces in the Wild - original images, but aligned using "deep funneling" method. (University of Massachusetts, Amherst)
  20. Manchester Annotated Talking Face Video Dataset (Timothy Cootes)
  21. MIT Collation of Face Databases (Ethan Meyers)
  22. MORPH (Craniofacial Longitudinal Morphological Face Database) (University of North Carolina Wilmington)
  23. MIT CBCL Face Recognition Database (Center for Biological and Computational Learning)
  24. NIST mugshot identification database (USA National Institute of Standards and Technology)
  25. ORL face database: 40 people with 10 views (ATT Cambridge Labs)
  26. Oxford: faces, flowers, multi-view, buildings, object categories, motion segmentation, affine covariant regions, misc (Oxford Visual Geometry Group)
  27. PubFig: Public Figures Face Database (Neeraj Kumar, Alexander C. Berg, Peter N. Belhumeur, and Shree K. Nayar)
  28. SCface - Surveillance Cameras Face Database (Mislav Grgic, Kresimir Delac, Sonja Grgic, Bozidar Klimpak))
  29. Trondheim Kinect RGB-D Person Re-identification Dataset (Igor Barros Barbosa)
  30. UB KinFace Database - University of Buffalo kinship verification and recognition database
  31. XM2VTS Face video sequences (295): The extended M2VTS Database (XM2VTS) - (Surrey University)
  32. Yale Face Database - 11 expressions of 10 people (A. Georghaides)
  33. Yale Face Database B - 576 viewing conditions of 10 people (A. Georghaides)

Fingerprints

  1. FVC fingerpring verification competition 2002 dataset (University of Bologna)
  2. FVC fingerpring verification competition 2004 dataset (University of Bologna)
  3. FVC - a subset of FVC (Fingerprint Verification Competition) 2002 and 2004 fingerprint image databases, manually extracted minutiae data & associated documents (Umut Uludag)
  4. NIST fingerprint databases (USA National Institute of Standards and Technology)
  5. SPD2010 Fingerprint Singular Points Detection Competition(SPD 2010 committee)

General Images

  1. Aerial color image dataset (Swiss Federal Institute of Technology)
  2. AMOS: Archive of Many Outdoor Scenes (20+m) (Nathan Jacobs)
  3. Brown Univ Large Binary Image Database (Ben Kimia)
  4. Columbia Multispectral Image Database (F. Yasuma, T. Mitsunaga, D. Iso, and S.K. Nayar)
  5. HIPR2 Image Catalogue of different types of images (Bob Fisher et al)
  6. Hyperspectral images of natural scenes - 2002 (David H. Foster)
  7. Hyperspectral images of natural scenes - 2004 (David H. Foster)
  8. ImageNet Linguistically organised (WordNet) Hierarchical Image Database - 10E7 images, 15K categories (Li Fei-Fei, Jia Deng, Hao Su, Kai Li)
  9. ImageNet Large Scale Visual Recognition Challenge (Alex Berg, Jia Deng, Fei-Fei Li)
  10. OTCBVS Thermal Imagery Benchmark Dataset Collection (Ohio State Team)
  11. McGill Calibrated Colour Image Database (Adriana Olmos and Fred Kingdom)
  12. Tiny Images Dataset 79 million 32x32 color images (Fergus, Torralba, Freeman)

Gesture Databases

  1. FG-Net Aging Database of faces at different ages (Face and Gesture Recognition Research Network)
  2. Hand gesture and marine silhouettes (Euripides G.M. Petrakis)
  3. IDIAP Hand pose/gesture datasets (Sebastien Marcel)
  4. Sheffield gesture database - 2160 RGBD hand gesture sequences, 6 subjects, 10 gestures, 3 postures, 3 backgrounds, 2 illuminations (Ling Shao)

Image, Video and Shape Database Retrieval

  1. Brown Univ 25/99/216 Shape Databases (Ben Kimia)
  2. IAPR TC-12 Image Benchmark (Michael Grubinger)
  3. IAPR-TC12 Segmented and annotated image benchmark (SAIAPR TC-12): (Hugo Jair Escalante)
  4. ImageCLEF 2010 Concept Detection and Annotation Task (Stefanie Nowak)
  5. ImageCLEF 2011 Concept Detection and Annotation Task - multi-label classification challenge in Flickr photos
  6. CLEF-IP 2011 evaluation on patent images
  7. McGill 3D Shape Benchmark (Siddiqi, Zhang, Macrini, Shokoufandeh, Bouix, Dickinson)
  8. NIST SHREC 2010 - Shape Retrieval Contest of Non-rigid 3D Models (USA National Institute of Standards and Technology)
  9. NIST SHREC - other NIST retrieval contest databases and links (USA National Institute of Standards and Technology)
  10. NIST TREC Video Retrieval Evaluation Database (USA National Institute of Standards and Technology)
  11. Princeton Shape Benchmark (Princeton Shape Retrieval and Analysis Group)
  12. Queensland cross media dataset - millions of images and text documents for "cross-media" retrieval (Yi Yang)
  13. TOSCA 3D shape database (Bronstein, Bronstein, Kimmel)

Object Databases

  1. 2.5D/3D Datasets of various objects and scenes (Ajmal Mian)
  2. Amsterdam Library of Object Images (ALOI): 100K views of 1K objects (University of Amsterdam/Intelligent Sensory Information Systems)
  3. Caltech 101 (now 256) category object recognition database (Li Fei-Fei, Marco Andreeto, Marc'Aurelio Ranzato)
  4. Columbia COIL-100 3D object multiple views (Columbia University)
  5. Densely sampled object views: 2500 views of 2 objects, eg for view-based recognition and modeling (Gabriele Peters, Universiteit Dortmund)
  6. German Traffic Sign Detection Benchmark (Ruhr-Universitat Bochum)
  7. GRAZ-02 Database (Bikes, cars, people) (A. Pinz)
  8. Linkoping 3D Object Pose Estimation Database (Fredrik Viksten and Per-Erik Forssen)
  9. Microsoft Object Class Recognition image databases (Antonio Criminisi, Pushmeet Kohli, Tom Minka, Carsten Rother, Toby Sharp, Jamie Shotton, John Winn)
  10. Microsoft salient object databases (labeled by bounding boxes) (Liu, Sun Zheng, Tang, Shum)
  11. MIT CBCL Car Data (Center for Biological and Computational Learning)
  12. MIT CBCL StreetScenes Challenge Framework: (Stan Bileschi)
  13. NEC Toy animal object recognition or categorization database (Hossein Mobahi)
  14. NORB 50 toy image database (NYU)
  15. PASCAL Image Database (motorbikes, cars, cows) (PASCAL Consortium)
  16. PASCAL 2007 Challange Image Database (motorbikes, cars, cows) (PASCAL Consortium)
  17. PASCAL 2008 Challange Image Database (PASCAL Consortium)
  18. PASCAL 2009 Challange Image Database (PASCAL Consortium)
  19. PASCAL 2010 Challange Image Database (PASCAL Consortium)
  20. PASCAL 2011 Challange Image Database (PASCAL Consortium)
  21. PASCAL 2012 Challange Image Database Category classification, detection, and segmentation, and still-image action classification (PASCAL Consortium)
  22. UIUC Car Image Database (UIUC)
  23. UIUC Dataset of 3D object categories (S. Savarese and L. Fei-Fei)
  24. Venezia 3D object-in-clutter recognition and segmentation (Emanuele Rodola)

People, Pedestrian, Eye/Iris, Template Detection/Tracking Databases

  1. 3D KINECT Gender Walking data base (L. Igual, A. Lapedriza, R. Borràs from UB, CVC and UOC, Spain)
  2. Caltech Pedestrian Dataset (P. Dollar, C. Wojek, B. Schiele and P. Perona)
  3. CASIA gait database (Chinese Academy of Sciences)
  4. CASIA-IrisV3 (Chinese Academy of Sciences, T. N. Tan, Z. Sun)
  5. CAVIAR project video sequences with tracking and behavior ground truth (CAVIAR team/Edinburgh University - EC project IST-2001-37540)
  6. Daimler Pedestrian Detection Benchmark 21790 images with 56492 pedestrians plus empty scenes (M. Enzweiler, D. M. Gavrila)
  7. Driver Monitoring Video Dataset (RobeSafe + Jesus Nuevo-Chiquero)
  8. Edinburgh overhead camera person tracking dataset (Bob Fisher, Bashia Majecka, Gurkirt Singh, Rowland Sillito)
  9. Eyetracking database summary (Stefan Winkler)
  10. HAT database of 27 human attributes (Gaurav Sharma, Frederic Jurie)
  11. INRIA Person Dataset (Navneet Dalal)
  12. ISMAR09 ground truth video dataset for template-based (i.e. planar) tracking algorithms(Sebastian Lieberknecht)
  13. MIT CBCL Pedestrian Data (Center for Biological and Computational Learning)
  14. MIT eye tracking database (1003 images) (Judd et al)
  15. Notre Dame Iris Image Dataset (Patrick J. Flynn)
  16. PETS 2009 Crowd Challange dataset (Reading University & James Ferryman)
  17. PETS: Performance Evaluation of Tracking and Surveillance (Reading University & James Ferryman)
  18. PETS Winter 2009 workshop data (Reading University & James Ferryman)
  19. UBIRIS: Noisy Visible Wavelength Iris Image Databases (University of Beira)
  20. Univ of Central Florida - Crowd Dataset (Saad Ali)
  21. Univ of Central Florida - Crowd Flow Segmentation datasets (Saad Ali)
  22. York Univ Eye Tracking Dataset (120 images) (Neil Bruce)

Segmentation

  1. Alpert et al. Segmentation evaluation database (Sharon Alpert, Meirav Galun, Ronen Basri, Achi Brandt)
  2. Berkeley Segmentation Dataset and Benchmark (David Martin and Charless Fowlkes)
  3. GrabCut Image database (C. Rother, V. Kolmogorov, A. Blake, M. Brown)
  4. LabelMe images database and online annotation tool (Bryan Russell, Antonio Torralba, Kevin Murphy, William Freeman)

Surveillance

  1. AVSS07: Advanced Video and Signal based Surveillance 2007 datasets (Andrea Cavallaro)
  2. ETISEO Video Surveillance Download Datasets (INRIA Orion Team and others)
  3. Heriot Watt Summary of datasets for human tracking and surveillance (Zsolt Husz)
  4. SPEVI: Surveillance Performance EValuation Initiative (Queen Mary University London)
  5. Udine Trajectory-based anomalous event detection dataset - synthetic trajectory datasets with outliers (Univ of Udine Artificial Vision and Real Time Systems Laboratory)

Textures

  1. Color texture images by category (textures.forrest.cz)
  2. Columbia-Utrecht Reflectance and Texture Database (Columbia & Utrecht Universities)
  3. DynTex: Dynamic texture database (Renaud Piteri, Mark Huiskes and Sandor Fazekas)
  4. Oulu Texture Database (Oulu University)
  5. Prague Texture Segmentation Data Generator and Benchmark (Mikes, Haindl)
  6. Uppsala texture dataset of surfaces and materials - fabrics, grains, etc.
  7. Vision Texture (MIT Media Lab)

General Videos

  1. Large scale YouTube video dataset - 156,823 videos (2,907,447 keyframes) crawled from YouTube videos (Yi Yang)

Other Collections

  1. CANTATA Video and Image Database Index site (Multitel)
  2. Computer Vision Homepage list of test image databases (Carnegie Mellon Univ)
  3. ETHZ various, including 3D head pose, shape classes, pedestrians, pedestrians, buildings (ETH Zurich, Computer Vision Lab)
  4. Leibe's Collection of people/vehicle/object databases (Bastian Leibe)
  5. Lotus Hill Image Database Collection with Ground Truth (Sealeen Ren, Benjamin Yao, Michael Yang)
  6. Oxford Misc, including Buffy, Flowers, TV characters, Buildings, etc (Oxford Visual geometry Group)
  7. PEIPA Image Database Summary (Pilot European Image Processing Archive)
  8. Univ of Bern databases on handwriting, online documents, string edit and graph matching (Univ of Bern, Computer Vision and Artificial Intelligence)
  9. USC Annotated Computer Vision Bibliography database publication summary (Keith Price)
  10. USC-SIPI image databases: texture, aerial, favorites (eg. Lena) (USC Signal and Image Processing Institute)

Miscellaneous

    1. 3D mesh watermarking benchmark dataset (Guillaume Lavoue)
    2. Active Appearance Models datasets (Mikkel B. Stegmann)
    3. Aircraft tracking (Ajmal Mian)
    4. Cambridge Motion-based Segmentation and Recognition Dataset (Brostow, Shotton, Fauqueur, Cipolla)
    5. Catadioptric camera calibration images (Yalin Bastanlar)
    6. Chars74K dataset - 74 English and Kannada characters (Teo de Campos - t.decampos@surrey.ac.uk)
    7. COLD (COsy Localization Database) - place localization (Ullah, Pronobis, Caputo, Luo, and Jensfelt)
    8. Columbia Camera Response Functions: Database (DoRF) and Model (EMOR) (M.D. Grossberg and S.K. Nayar)
    9. Columbia Database of Contaminants' Patterns and Scattering Parameters (Jinwei Gu, Ravi Ramamoorthi, Peter Belhumeur, Shree Nayar)
    10. Dense outdoor correspondence ground truth datasets, for optical flow and local keypoint evaluation (Christoph Strecha)
    11. DTU controlled motion and lighting image dataset (135K images) (Henrik Aanaes)
    12. EISATS: .enpeda.. Image Sequence Analysis Test Site (Auckland University Multimedia Imaging Group)
    13. FlickrLogos-32 - 8240 images of 32 product logos (Stefan Romberg)
    14. Flowchart images (Allan Hanbury)
    15. Geometric Context - scene interpretation images (Derek Hoiem)
    16. Image/video quality assessment database summary (Stefan Winkler)
    17. INRIA feature detector evaluation sequences (Krystian Mikolajczyk)
    18. INRIA's PERCEPTION's database of images and videos gathered with several synchronized and calibrated cameras (INRIA Rhone-Alpes)
    19. INRIA's Synchronized and calibrated binocular/binaural data sets with head movements (INRIA Rhone-Alpes)
    20. KITTI dataset for stereo, optical flow and visual odometry (Geiger, Lenz, Urtasun)
    21. Large scale 3D point cloud data from terrestrial LiDAR scanning (Andreas Nuechter)
    22. Linkoping Rolling Shutter Rectification Dataset (Per-Erik Forssen and Erik Ringaby)
    23. Middlebury College stereo vision research datasets (Daniel Scharstein and Richard Szeliski)
    24. MPI-Sintel optical flow evaluation dataset (Michael Black)
    25. Multiview stereo images with laser based groundtruth (ESAT-PSI/VISICS,FGAN-FOM,EPFL/IC/ISIM/CVLab)
    26. The Cancer Imaging Archive (National Cancer Institute)
    27. NCI Cancer Image Archive - prostate images (National Cancer Institute)
    28. NIST 3D Interest Point Detection (Helin Dutagaci, Afzal Godil)
    29. NRCS natural resource/agricultural image database (USDA Natural Resources Conservation Service)
    30. Occlusion detection test data (Andrew Stein)
    31. The Open Video Project (Gary Marchionini, Barbara M. Wildemuth, Gary Geisler, Yaxiao Song)
    32. Pics 'n' Trails - Dataset of Continuously archived GPS and digital photos (Gamhewage Chaminda de Silva)
    33. PRINTART: Artistic images of prints of well known paintings, including detail annotations. A benchmark for automatic annotation and retrieval tasks with this database was published at ECCV. (Nuno Miguel Pinho da Silva)
    34. RAWSEEDS SLAM benchmark datasets (Rawseeds Project)
    35. Robotic 3D Scan Repository - 3D point clouds from robotic experiments of scenes (Osnabruck and Jacobs Universities)
    36. ROMA (ROad MArkings) : Image database for the evaluation of road markings extraction algorithms (Jean-Philippe Tarel, et al)
    37. Stuttgart Range Image Database - 66 views of 45 objects
    38. UCL Ground Truth Optical Flow Dataset (Oisin Mac Aodha)
    39. Univ of Genoa Datasets for disparity and optic flow evaluation (Manuela Chessa)
    40. Validation and Verification of Neural Network Systems (Francesco Vivarelli)
    41. VSD: Technicolor Violent Scenes Dataset - a collection of ground-truth files based on the extraction of violent events in movies
    42. WILD: Weather and Illumunation Database (S. Narasimhan, C. Wang. S. Nayar, D. Stolyarov, K. Garg, Y. Schechner, H. Peri)

zhuan 常用图像数据集:标注、检索的更多相关文章

  1. NLP+VS︱深度学习数据集标注工具、方法摘录,欢迎补充~~

    ~~因为不太会使用opencv.matlab工具,所以在找一些比较简单的工具. . . 一.NLP标注工具BRAT BRAT是一个基于web的文本标注工具,主要用于对文本的结构化标注,用BRAT生成的 ...

  2. 动手学深度学习6-认识Fashion_MNIST图像数据集

    获取数据集 读取小批量样本 小结 本节将使用torchvision包,它是服务于pytorch深度学习框架的,主要用来构建计算机视觉模型. torchvision主要由以下几个部分构成: torchv ...

  3. 【机器学习】【计算机视觉】非常全面的图像数据集《Actions》

    目录(?)[+]   1.搜狗实验室数据集: http://www.sogou.com/labs/dl/p.html 互联网图片库来自sogou图片搜索所索引的部分数据.其中收集了包括人物.动物.建筑 ...

  4. coco数据集标注图转为二值图python(附代码)

    coco数据集大概有8w张以上的图片,而且每幅图都有精确的边缘mask标注. 后面后分享一个labelme标注的json或xml格式转二值图的源码(以备以后使用) 而我现在在研究显著性目标检测,需要的 ...

  5. pytorch 计算图像数据集的均值和标准差

    在使用 torchvision.transforms进行数据处理时我们经常进行的操作是: transforms.Normalize((0.485,0.456,0.406), (0.229,0.224, ...

  6. 计算图像数据集的RGB均值

    最近在跑代码的时候,需要用到RGB三个通道上的均值,如下图所示: 写了一个程序,如下: import os import cv2 import random import numpy as np #数 ...

  7. python进阶—OpenCV之常用图像操作函数说明(转)

    文章目录cv2.thresholdcv2.bitwise_andcv2.bitwise_orcv2.bitwise_notcv2.inRangecv2.resizecv2.adaptiveThresh ...

  8. SUN dataset图像数据集下载

    SUN dataset数据集,有两个不错的网址: http://vision.princeton.edu/projects/2010/SUN/ (普林斯顿大学) http://groups.csail ...

  9. AE常用代码(标注要素、AE中画带箭头的线、如何获得投影坐标、参考坐标、投影方式、FeatureCount注意事项)

    手上的电脑已经用了将近三年了,想入手一台Surface Pro,所以计划着把电脑上的资料整理下,部分资料打算发到博客上来,资料有同事.也有自己的.也有来自网络的,来源途径太多,也没法详细注明,请见谅! ...

随机推荐

  1. python web.py实现简单的get和post请求

    使用web.py框架,实现简单的get和post请求: py文件名:mytest.py import web urls = ( '/', 'hello' ) app = web.application ...

  2. [HTML]js读取XML文件并解析

    xml文件:test.xml <?xml version="1.0"?> <note> <to>George</to> <fr ...

  3. The origin server did not find a current representation for the target resource or is not willing to disclose that one exists.

    关于出现这个·问题的原因貌似也是多种多样的? 在stack overflow上的帖子如下:https://stackoverflow.com/questions/43186315/tomcat-404 ...

  4. 《剑指offer》第四十八题(最长不含重复字符的子字符串)

    // 面试题48:最长不含重复字符的子字符串 // 题目:请从字符串中找出一个最长的不包含重复字符的子字符串,计算该最长子 // 字符串的长度.假设字符串中只包含从'a'到'z'的字符. #inclu ...

  5. yum的配置文件介绍

    yum 的配置文件分为两部分:main 和repository   main 部分定义了全局配置选项,整个yum 配置文件应该只有一个main.常位于/etc/yum.conf 中. reposito ...

  6. JAVA基础知识总结:一到二十二全部总结

    >一: 一.软件开发的常识 1.什么是软件? 一系列按照特定顺序组织起来的计算机数据或者指令 常见的软件: 系统软件:Windows\Mac OS \Linux 应用软件:QQ,一系列的播放器( ...

  7. 滑动拼图 Sliding Puzzle

    2018-09-09 22:01:02 问题描述: 问题求解: 问题很Interesting,其实本质就是解空间遍历,使用BFS就可以很快的予以解决~ public int slidingPuzzle ...

  8. Maven报错Please ensure you are using JDK 1.4 or above and not a JRE解决方法!

    https://www.cnblogs.com/shihua513/p/6163682.html 在eclipse下用maven编译时,很有可能出现以下错误: Please ensure you ar ...

  9. linux文件管理之bash shell

    BASH Shell 对文件进行管理 ========================================================创建.复制.删除.移动.查看.编辑.压缩.查找 内 ...

  10. appium+python+unittest+HTMLRunner编写UI自动化测试集

    简介 获取AppPackage和AppActivity 定位UI控件的工具 脚本结构 PageObject分层管理 HTMLTestRunner生成测试报告 启动appium server服务 以py ...