多线程中的Lock小结
出处:http://www.cnblogs.com/DarrenChan/p/6528578.html#undefined
1.lock和synchronized的区别
1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;
2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。
2.java.util.concurrent.locks包下常用的类
首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口:

- public interface Lock {
- void lock();
- void lockInterruptibly() throws InterruptedException;
- boolean tryLock();
- boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
- void unlock();
- }

Lock接口中每个方法的使用:
lock()、tryLock()、tryLock(long time, TimeUnit unit)、lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。
四个获取锁方法的区别:
- lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。
- tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。
- tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。
- lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。
直接使用lock接口的话,我们需要实现很多方法,不太方便,ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法,ReentrantLock,意思是“可重入锁”。
以下是ReentrantLock的使用案例:
例子1,lock()的正确使用方法

- package cn.itcast_01_mythread.thread.lock;
- import java.util.ArrayList;
- import java.util.concurrent.locks.Lock;
- import java.util.concurrent.locks.ReentrantLock;
- public class MyLockTest {
- private static ArrayList<Integer> arrayList = new ArrayList<Integer>();
- static Lock lock = new ReentrantLock(); // 注意这个地方
- public static <E> void main(String[] args) {
- new Thread() {
- public void run() {
- Thread thread = Thread.currentThread();
- lock.lock();
- try {
- System.out.println(thread.getName() + "得到了锁");
- for (int i = 0; i < 5; i++) {
- arrayList.add(i);
- }
- } catch (Exception e) {
- // TODO: handle exception
- } finally {
- System.out.println(thread.getName() + "释放了锁");
- lock.unlock();
- }
- };
- }.start();
- new Thread() {
- public void run() {
- Thread thread = Thread.currentThread();
- lock.lock();
- try {
- System.out.println(thread.getName() + "得到了锁");
- for (int i = 0; i < 5; i++) {
- arrayList.add(i);
- }
- } catch (Exception e) {
- // TODO: handle exception
- } finally {
- System.out.println(thread.getName() + "释放了锁");
- lock.unlock();
- }
- };
- }.start();
- }
- }

运行结果:
Thread-0得到了锁
Thread-0释放了锁
Thread-1得到了锁
Thread-1释放了锁
即正常的加锁操作。
例子2,tryLock()的使用方法

- package cn.itcast_01_mythread.thread.lock;
- import java.util.ArrayList;
- import java.util.concurrent.locks.Lock;
- import java.util.concurrent.locks.ReentrantLock;
- /**
- * 观察现象:一个线程获得锁后,另一个线程取不到锁,不会一直等待
- * @author
- *
- */
- public class MyTryLock {
- private static ArrayList<Integer> arrayList = new ArrayList<Integer>();
- static Lock lock = new ReentrantLock(); // 注意这个地方
- public static void main(String[] args) {
- new Thread() {
- public void run() {
- Thread thread = Thread.currentThread();
- boolean tryLock = lock.tryLock();
- System.out.println(thread.getName()+" "+tryLock);
- if (tryLock) {
- try {
- System.out.println(thread.getName() + "得到了锁");
- for (int i = 0; i < 5; i++) {
- arrayList.add(i);
- }
- } catch (Exception e) {
- // TODO: handle exception
- } finally {
- System.out.println(thread.getName() + "释放了锁");
- lock.unlock();
- }
- }
- };
- }.start();
- new Thread() {
- public void run() {
- Thread thread = Thread.currentThread();
- boolean tryLock = lock.tryLock();
- System.out.println(thread.getName()+" "+tryLock);
- if (tryLock) {
- try {
- System.out.println(thread.getName() + "得到了锁");
- for (int i = 0; i < 5; i++) {
- arrayList.add(i);
- }
- } catch (Exception e) {
- // TODO: handle exception
- } finally {
- System.out.println(thread.getName() + "释放了锁");
- lock.unlock();
- }
- }
- };
- }.start();
- }
- }

运行结果:
Thread-0 true
Thread-0得到了锁
Thread-0释放了锁
Thread-1 true
Thread-1得到了锁
Thread-1释放了锁
或者
Thread-0 true
Thread-0得到了锁
Thread-1 false
Thread-0释放了锁
可见结果不定,尝试获取锁,可能成功,可能失败。
例子3,lockInterruptibly()响应中断的使用方法:

- package cn.itcast_01_mythread.thread.lock;
- import java.util.concurrent.locks.Lock;
- import java.util.concurrent.locks.ReentrantLock;
- /**
- * 观察现象:如果thread-0得到了锁,阻塞。。。thread-1尝试获取锁,如果拿不到,则可以被中断等待
- *
- * @author
- *
- */
- public class MyInterruptibly {
- private Lock lock = new ReentrantLock();
- public static void main(String[] args) {
- MyInterruptibly test = new MyInterruptibly();
- MyThread thread0 = new MyThread(test);
- MyThread thread1 = new MyThread(test);
- thread0.start();
- thread1.start();
- try {
- Thread.sleep(2000);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- thread1.interrupt();
- System.out.println("=====================");
- }
- public void insert(Thread thread) throws InterruptedException {
- lock.lockInterruptibly(); // 注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出
- try {
- System.out.println(thread.getName() + "得到了锁");
- long startTime = System.currentTimeMillis();
- for (;;) {
- if (System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
- break;
- // 插入数据
- }
- } finally {
- System.out.println(Thread.currentThread().getName() + "执行finally");
- lock.unlock();
- System.out.println(thread.getName() + "释放了锁");
- }
- }
- }
- class MyThread extends Thread {
- private MyInterruptibly test = null;
- public MyThread(MyInterruptibly test) {
- this.test = test;
- }
- @Override
- public void run() {
- try {
- test.insert(Thread.currentThread());
- } catch (Exception e) {
- System.out.println(Thread.currentThread().getName() + "被中断");
- }
- }
- }

运行结果:
Thread-0得到了锁
=====================
Thread-1被中断
我们可以看到,Thread-0得到了锁,一直不释放,此时Thread-1可以手动停止。
接下来我们说一下ReadWriteLock,ReadWriteLock也是一个接口,在它里面只定义了两个方法:

- public interface ReadWriteLock {
- /**
- * Returns the lock used for reading.
- * @return the lock used for reading.
- */
- Lock readLock();
- /**
- * Returns the lock used for writing.
- * @return the lock used for writing.
- */
- Lock writeLock();
- }

一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。
ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。
下面通过几个例子来看一下ReentrantReadWriteLock具体用法。
当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。但是采用synchronized关键字来实现同步的话,就会导致一个问题:
如果多个线程都只是进行读操作,当一个线程在进行读操作时,其他线程只能等待无法进行读操作。
因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。
另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。
总的来说,也就是说Lock提供了比synchronized更多的功能。
例子1:假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果

- package cn.itcast_01_mythread.thread.lock;
- /**
- * 一个线程又要读又要写,用synchronize来实现的话,读写操作都只能锁住后一个线程一个线程地进行
- * @author
- *
- */
- public class MySynchronizedReadWrite {
- public static void main(String[] args) {
- final MySynchronizedReadWrite test = new MySynchronizedReadWrite();
- new Thread(){
- public void run() {
- test.get(Thread.currentThread());
- };
- }.start();
- new Thread(){
- public void run() {
- test.get(Thread.currentThread());
- };
- }.start();
- }
- public synchronized void get(Thread thread) {
- long start = System.currentTimeMillis();
- int i=0;
- while(System.currentTimeMillis() - start <= 1) {
- i++;
- if(i%4==0){
- System.out.println(thread.getName()+"正在进行写操作");
- }else {
- System.out.println(thread.getName()+"正在进行读操作");
- }
- }
- System.out.println(thread.getName()+"读写操作完毕");
- }
- }

运行结果:
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0读写操作完毕
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1读写操作完毕
我们可以看到,只有Thread-0读写操作完毕之后,Thread-1才会进行读写操作,不会有交叉。
例子2:改成用读写锁的话:

- package cn.itcast_01_mythread.thread.lock;
- import java.util.concurrent.locks.ReentrantReadWriteLock;
- /**
- * 使用读写锁,可以实现读写分离锁定,读操作并发进行,写操作锁定单个线程
- *
- * 如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。
- * 如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。
- * @author
- *
- */
- public class MyReentrantReadWriteLock {
- private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
- public static void main(String[] args) {
- final MyReentrantReadWriteLock test = new MyReentrantReadWriteLock();
- new Thread(){
- public void run() {
- test.get(Thread.currentThread());
- test.write(Thread.currentThread());
- };
- }.start();
- new Thread(){
- public void run() {
- test.get(Thread.currentThread());
- test.write(Thread.currentThread());
- };
- }.start();
- }
- /**
- * 读操作,用读锁来锁定
- * @param thread
- */
- public void get(Thread thread) {
- rwl.readLock().lock();
- try {
- long start = System.currentTimeMillis();
- while(System.currentTimeMillis() - start <= 1) {
- System.out.println(thread.getName()+"正在进行读操作");
- }
- System.out.println(thread.getName()+"读操作完毕");
- } finally {
- rwl.readLock().unlock();
- }
- }
- /**
- * 写操作,用写锁来锁定
- * @param thread
- */
- public void write(Thread thread) {
- rwl.writeLock().lock();;
- try {
- long start = System.currentTimeMillis();
- while(System.currentTimeMillis() - start <= 1) {
- System.out.println(thread.getName()+"正在进行写操作");
- }
- System.out.println(thread.getName()+"写操作完毕");
- } finally {
- rwl.writeLock().unlock();
- }
- }
- }

运行结果:
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0读操作完毕
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1读操作完毕
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1写操作完毕
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0写操作完毕
可以看到,当Thread-0进行读操作时,Thread-1也可以进行读操作,而写操作不能同时进行。
注意:
如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。
如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。
3.Lock和synchronized的选择
1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;
2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;
3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;
4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。
5)Lock可以提高多个线程进行读操作的效率。
在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。
多线程中的Lock小结的更多相关文章
- 多线程中的lock,Monitor.Wait和Monitor.Pulse
我们知道lock实际上一个语法糖糖,C#编译器实际上把他展开为Monitor.Enter和Monitor.Exit,即: lock(lockObj) { //... } ////相当于(.Net4以前 ...
- 多线程中的synchronized小结
1.synchronized是Java中的关键字,是一种同步锁.它修饰的对象有以下几种: 1. 修饰一个代码块,被修饰的代码块称为同步语句块,其作用的范围是大括号{}括起来的代码,作用的对象是调用这个 ...
- c#初学-多线程中lock用法的经典实例
本文转载自:http://www.cnblogs.com/promise-7/articles/2354077.html 一.Lock定义 lock 关键字可以用来确保代码块完成运行,而不会被 ...
- 多线程中lock用法的经典实例
多线程中lock用法的经典实例 一.Lock定义 lock 关键字可以用来确保代码块完成运行,而不会被其他线程中断.它可以把一段代码定义为互斥段(critical section),互斥段在一 ...
- python 多线程中的同步锁 Lock Rlock Semaphore Event Conditio
摘要:在使用多线程的应用下,如何保证线程安全,以及线程之间的同步,或者访问共享变量等问题是十分棘手的问题,也是使用多线程下面临的问题,如果处理不好,会带来较严重的后果,使用python多线程中提供Lo ...
- c#多线程中Lock()关键字的用法小结
本篇文章主要是对c#多线程中Lock()关键字的用法进行了详细的总结介绍,需要的朋友可以过来参考下,希望对大家有所帮助 本文介绍C# lock关键字,C#提供了一个关键字lock,它可以把一段 ...
- pthread多线程编程的学习小结
pthread多线程编程的学习小结 pthread 同步3种方法: 1 mutex 2 条件变量 3 读写锁:支持多个线程同时读,或者一个线程写 程序员必上的开发者服务平台 —— DevSt ...
- clone的fork与pthread_create创建线程有何不同&pthread多线程编程的学习小结(转)
进程是一个指令执行流及其执行环境,其执行环境是一个系统资源的集合,这些资源在Linux中被抽 象成各种数据对象:进程控制块.虚存空间.文件系统,文件I/O.信号处理函数.所以创建一个进程的 过程就是这 ...
- Java多线程编程核心技术--Lock的使用(一)
使用ReentrantLock类 在Java多线程中,可以使用synchronized关键字来实现线程之间的同步互斥,但在JDK1.5中新增加了ReentrantLock类也能达到同样的效果,并且在扩 ...
随机推荐
- django面试七
Dango model 几种继承形式抽共享继承不能等实例化,抽象方法必须在子类中实现,Django不对其建立对应的表.class Animal(models.Model): name = models ...
- String中对字符串进行操作的一些方法
1.substring 作用:根据字符串下标进行截取 public class StrTest { public static void main(String[] args) { String a ...
- JS之计时器
JavaScript 计时事件 通过使用 JavaScript,我们有能力作到在一个设定的时间间隔之后来执行代码,而不是在函数被调用后立即执行.我们称之为计时事件. 在 JavaScritp 中使用计 ...
- Scrum_Sprint
1.计划会议过程 经过一天的讨论研究,我们对该项目进行了需求分析,确定了这周所要实现的各个功能 并做好了任务看板,并将项目的各个功能分成一个个任务,进行了初步的分工 2.backlog BACKLOG ...
- xdoj1321----简单搜索
1321: 营救公主 时间限制: 1 Sec 内存限制: 128 MB提交: 156 解决: 37[提交][状态][讨论版] 题目描述 DSKer今天又做梦了,他的睡眠质量一直很差.他梦见他化身骑 ...
- Redis 当成数据库在使用和可靠的分布式锁,Redlock 真的可行么?
怎样做可靠的分布式锁,Redlock 真的可行么? https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html ...
- 《DSP using MATLAB》Problem 6.3
天不亮又醒了,拍了张景象,这就是黎明前的黑暗吗
- 《DSP using MATLAB》Problem 5.1
恰逢清明,这几天是清明时节雪纷纷,断崖式降温:又回到了老家,儿时上蹿下跳的核桃树,远去的故乡,远去的时代…… 用到的公式: 这里只放前两个小题的计算过程,都比较简单,细心就行.代码如下: %% --- ...
- hihocoder1489 Legendary Items 概率期望
Little Hi is playing a video game. Each time he accomplishes a quest in the game, Little Hi has a ch ...
- vue全家桶+Koa2开发笔记(4)--redis
redis用来在服务器端存放session 1 安装redis brew install redis 启动redis redis-server 2 安装两个中间件 npm i koa-ge ...