洛谷 P2257 YY的GCD
洛谷 P2257 YY的GCD

$ solution: $
这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路。
我们可以列出答案就是要我们求:
$ ans=\sum_{p\in prime}\sum_{i=1}{n}{\sum_{j=1}{m}{[gcd(i,j)==p]}} $
我们发现后面那一部分( $ \sum_{i=1}{n}{\sum_{j=1}{m}{[gcd(i,j)==p]}} $ )可以套路的莫比乌斯反演:
$ ans=\sum_{p\in prime}\sum_{i=1}{\frac{n}{p}}{\sum_{j=1}{\frac{m}{p}}{[gcd(i,j)==1]}} $
$ ans=\sum_{p\in prime}\sum_{i=1}{\frac{n}{p}}{\sum_{j=1}{\frac{m}{p}}{\sum_{k|gcd(i,j)}{\mu(k)}}} $
$ ans=\sum_{p\in prime}\sum_{k}{min(n,m)}{\mu(k)}{\sum_{i=1}{\frac{n}{p}}{\sum_{j=1}^{\frac{m}{p}}{[k|gcd(i,j)]}}} $
$ ans=\sum_{p\in prime}\sum_{k}^{min(n,m)}{\mu(k)\times \lfloor \frac{n}{p\times k} \rfloor \times \lfloor \frac{m}{p\times k} \rfloor} $
我们发现后面那两个东西有点麻烦,我们想办法让它变成常数项:
设: $ T=p\times k $
$ ans=\sum_{t=1}^{min(n,m)} \lfloor \frac{n}{T} \rfloor \times \lfloor \frac{m}{T} \rfloor \sum_{p|T,p\in prime} \mu{\frac{T}{p}} $
然后我们发现后面那一部分( $ \sum_{p|T,p\in prime} \mu{\frac{T}{p}} $ )可以预处理,然后我们在前面用整除分块,这样就可以每次只用 $ log(min(n,m)) $ 的时间完成单个询问了!
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int
using namespace std;
const int N=1e7;
ll ans;
int n,m,t;
int pr[10000005];
int mu[10000005];
int sum[10000005];
bool zhi[10000005];
inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar())) if(ch=='-')sign=1;
while(isdigit(ch)) res=res*10+(ch^48),ch=getchar();
return sign?-res:res;
}
inline void get_ready(){
mu[1]=1; int t=0;
for(rg i=2;i<=N;++i){
if(!zhi[i])pr[++t]=i,mu[i]=-1;
for(rg j=1;j<=t;++j){
if(i*pr[j]>N)break;
zhi[i*pr[j]]=1;
if(!(i%pr[j]))break;
mu[i*pr[j]]=-mu[i];
}
}
for(rg i=1;i<=t;++i)
for(rg j=1;j*pr[i]<=N;++j)
sum[j*pr[i]]+=mu[j];
for(rg i=1;i<=N;++i) sum[i]+=sum[i-1];
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
t=qr(); get_ready();
while(t--){ ans=0;
n=qr(); m=qr();
rg x=min(n,m),l,r;
for(l=1;l<=x;l=r+1){
r=min(n/(n/l),m/(m/l));
ans+=(ll)(n/l)*(m/l)*(sum[r]-sum[l-1]);
}printf("%lld\n",ans);
}
return 0;
}
洛谷 P2257 YY的GCD的更多相关文章
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
- 洛谷 P2257 YY的GCD 题解
原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...
- 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- 洛谷P2257 YY的GCD
今日份是数论 大概是..从小学奥数到渐渐毒瘤 那就简单列一下目录[大雾 同余 质数密度 唯一分解定理 互质 完全剩余系 简化剩余系 欧拉函数 逆元 斐蜀定理 阶(及其性质) 欧拉定理 费马小定理 原根 ...
- 洛谷P2257 YY的GCD(莫比乌斯反演)
传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$g ...
- 解题:洛谷2257 YY的GCD
题面 初见莫比乌斯反演 有一个套路是关于GCD的反演经常设$f(d)=\sum_{gcd(i,j)==d},g(d)=\sum_{d|gcd(i,j)}$,然后推推推 $\sum\limits_{i= ...
- [洛谷2257]YY的GCD 题解
整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...
- 洛谷 2257 - YY的GCD
莫比乌斯反演半模板题 很容易可以得到 \[Ans = \sum\limits_{p \in prime} \sum\limits_{d = 1}^{\min (\left\lfloor\frac{a} ...
随机推荐
- SpringBoot基础入门
1.SpringBoot核心相关内容 1.1入口类 SpringBoot通常有一个入口类*Application,内部有一个main方法,是启动SpringBoot的入口.使用@SpringBootA ...
- hdu 3949 XOR (线性基)
链接: http://acm.hdu.edu.cn/showproblem.php?pid=3949 题意: 给出n个数,从中任意取几个数字异或,求第k小的异或和 思路: 线性基求第k小异或和,因为题 ...
- Linux开机自动挂载存储的两种方式
登录服务器,给查看了下,发现确实是没有自动加载,df -h只能显示本地硬盘的分区,fdisk -l 还是能看到存储空间,这说明这个服务器连接存储是木有问题的. 输入history | grep mou ...
- mysql test== 坑
错误 <if test="status == '1'"> 正确 <if test="status == '1'.toString()">
- JAVA多线程之中断机制(如何处理中断?)
一,介绍 这篇文章主要记录使用 interrupt() 方法中断线程,以及如何对InterruptedException进行处理.感觉对InterruptedException异常进行处理是一件谨慎且 ...
- Java -- JDBC 学习--事务
数据库事务 在数据库中,所谓事务是指一组逻辑操作单元,使数据从一种状态变换到另一种状态.为确保数据库中数据的一致性,数据的操纵应当是离散的成组的逻辑单元:当它全部完成时,数据的一致性可以保持,而当这个 ...
- TextView 借助Linkify,使用自定义模式设置链接
http://my.oschina.net/fengheju/blog/176105 TextView是android中的一个比较常用的控件,它有一个非常有趣的特性,可以通过android:autoL ...
- A1029. Median
Given an increasing sequence S of N integers, the median is the number at the middle position. For e ...
- MyEclipse上有main函数类运行报错:Editor does not contain a main type
MyEclipse下有main函数类运行报错:Editor does not contain a main type 出现这种问题的原因是,该java文件所在的包没有被MyEclipse认定为源码包. ...
- Histogram of Oriented Gridients(HOG) 方向梯度直方图
Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很常用的一种描述图像局部纹理的特征.这个特征名字起的也很直白,就是说先计算图片某一区域中不同 ...