看着就是要打表找规律

使用以下代码

for(int i=3;i<=20;i++)
{
int a1=0,a2=0;
for(int j=1;j<i;j++)
{
for(int k=0;k<i;k++)
for(int l=0;l<=j;l++)
f[i][j]+=f[k][l]*f[i-k-1][j-l];
a2+=f[i][j],a1+=f[i][j]*j;
}
}

可以打出表

n   树总数 叶子总数
1 1 1
2 2 2
3 5 6
4 14 20
5 42 70
6 132 252
7 429 924

...

设树总数为\(f_n\),叶子总数为\(g_n\),我们可以发现$$f_n=\frac {\binom{2n}{n}} {n+1}$$$$g_n=nf_{n-1}$$

我们要求的期望就是$$\frac{g_n}{f_n}=\frac{nf_{n-1}}{f_n}=\frac{n \frac {\binom{2n-2}{n-1}} {n}}{\frac {\binom{2n}{n}} {n+1}}$$

\[=\frac{\binom{2n-2}{n-1}}{\binom{2n}{n}}*(n+1)=...=\frac{n(n+1)}{2(2n-1)}
\]

没了

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#define LL long long
#define il inline
#define re register
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b)) using namespace std;
il LL rd()
{
re LL x=0,w=1;re char ch;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
double n; int main()
{
n=rd();
printf("%.10lf\n",n*(n+1)/2/(2*n-1));
return 0;
}

luogu P3978 [TJOI2015]概率论的更多相关文章

  1. P3978 [TJOI2015]概率论

    \(\color{#0066ff}{ 题目描述 }\) 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的 ...

  2. [洛谷P3978][TJOI2015]概率论

    题目大意:对于一棵随机生成的$n$个结点的有根二叉树,所有不同构的形态等概率出现(这里同构当且仅当两棵二叉树根相同,并且相同节点的左儿子和右儿子都相同),求叶子节点个数的期望是多少? 题解:令$f_n ...

  3. 并不对劲的bzoj4001:loj2105:p3978:[TJOI2015]概率论

    题目大意 随机生成一棵\(n\)(n\leq10^9)个节点的有根二叉树,问叶子结点个数的期望. 题解 subtask 1:\(n\leq100\),70pts 结论:不同的\(n\)个节点的有根二叉 ...

  4. 4001: [TJOI2015]概率论

    4001: [TJOI2015]概率论 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 262  Solved: 108[Submit][Status] ...

  5. 【BZOJ4001】[TJOI2015]概率论(生成函数)

    [BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...

  6. [TJOI2015]概率论

    [TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...

  7. bzoj4001: [TJOI2015]概率论

    题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...

  8. [Luogu 3973] TJOI2015 线性代数

    [Luogu 3973] TJOI2015 线性代数 这竟然是一道最小割模型. 据说是最大权闭合子图. 先把矩阵式子推出来. 然后,套路建模就好. #include <algorithm> ...

  9. luogu P3975 [TJOI2015]弦论 SAM

    luogu P3975 [TJOI2015]弦论 链接 bzoj 思路 建出sam. 子串算多个的,统计preant tree的子树大小,否则就是大小为1 然后再统计sam的节点能走到多少串. 然后就 ...

随机推荐

  1. 如何隐藏Win7登录界面的administrator用户名恢复

    很多朋友一直在用着第三方的Windows7系统盘来装机,例如下载了Ghost格式的一些装机盘.在这些第三方系统中,很多家都是默认使用administrator 帐户自动登陆的. 从安全的角度来讲,这样 ...

  2. git常用命令及用法小计

    git init 初始化一个本地git仓库repository git status 查看状态 git add <file> 将工作区修改加到暂存区(stage) git commit - ...

  3. BZOJ4541 HNOI2016矿区(平面图转对偶图)

    考虑先将平面图转化为对偶图.具体地,将无向边拆成两条有向边.每次考虑找到包围一个区域的所有边.对当前考虑的边,找到该边的反向边在该边终点的出边集中,按极角序排序的后继,这条后继边也是包围该区域的边.这 ...

  4. java构造函数总结

    构造函数总结 概念:    创建对象时由JVM自动调用的函数 作用:    在创建对象的时候给对象的成员变量赋值: 写法: 修饰符:可以用访问权限修饰符(public.private等)修饰:不能用s ...

  5. P3312 [SDOI2014]数表

    啊啊啊我昨天怎么没写题解wwww 补昨日题解... 题目链接 : https://www.luogu.org/problemnew/show/P3312 也是莫反 我要把fft留到今天写 [和zyn小 ...

  6. Mac 下重新安装配置ibm Lotus 邮箱

    若邮箱之前有人使用,需要重新安装.在卸载程序之后,发现仍旧无法重新配置新的账号. 此时需要删除用户目录下的2个文件: /Library/Application Support/IBM Notes Da ...

  7. BZOJ 3526: [Poi2014]Card

    3526: [Poi2014]Card Time Limit: 25 Sec  Memory Limit: 64 MBSubmit: 267  Solved: 191[Submit][Status][ ...

  8. cf1063A Oh Those Palindromes (贪心)

    给一些字符 求它们能拼成的字符串 的回文子串的个数最大值 对应的那个字符串 就是把相同的都放一起是最优的,排下序就行了... #include<bits/stdc++.h> #define ...

  9. Power BI 实现实时更新Streaming Dataset

    一.在PowerBI portal端需要准备的操作: 1. https://app.powerbi.cn 登陆,点击左侧My Workspace,你需要有一个账号 2. 选入Datasets,点击页面 ...

  10. JS数组冒泡排序&去重

    冒泡排序: var a = [2,1,4,3,6,5]; for(var d = 0 ; d< a.length; d++){ for(var b = d+1; b < a.length; ...