HDU 6061 RXD and functions(NTT)
题意
给定一个\(n\) 次的 \(f\) 函数,向右移动 \(m\) 次得到 \(g\) 函数,第 \(i\) 次移动长度是 \(a_i\) ,求 \(g\) 函数解析式的各项系数,对 \(998244353\) 取模。
\(1 \leq n \leq 10^5\)
\(1\leq \sum m \leq 10^5\)
思路
设 \(\displaystyle S=-\sum_{i=1}^ma_i\)
g(x)=\sum_{i=0}^nc_i(x+S)^i\\
\]
二项展开后得到
\]
将 \(\displaystyle\sum_{j}\) 拉出,得到。
\]
那么多项式 \(g\) 的第 \(j\) 项 \(b_j\) 就是 \(\displaystyle\sum_{i=j}^nc_i{i\choose j}S^{i-j}\)
将组合数展开
\]
将只与 \(j\) 相关的项提出,合并变量相同的项得到
\]
不难发现,右边有两项仅与 \(i\) 有关,有两项仅与 \(i-j\) 有关。
把式子写成卷积的形式
\]
用 \(i+j\) 替换 \(j\) 得到
\]
其中 \(i\in[0,n] ,j\in[-n,0],i+j\in[-n,n]\)
设 \(\displaystyle A_i=c_ii!,B_j=S^{-j}{1\over{(-j)!}}\)
那么就有了最终的表达式 \(\displaystyle b_{i+j}={1\over{i+j}}A_iB_j\)
对 \(A,B\) 两多项式进行卷积,最后乘上 \(\displaystyle {1\over {i+j}}\) 即可。
最后我们需要的只是 \(b\) 在 \([0,n]\) 的结果,多项式相乘一步,可以理解为:一组状态,每一个值都向一些方向转移一些值,用多项式表示就是一个状态多项式、一个转移多项式乘出一个结果多项式。关键是要保证所有状态的转移方向一致。
代码
#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long ll;
using namespace std;
const int P=998244353,g=3;
const int N=1<<17|5;
namespace Maths
{
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=1,y=0;return;}
exgcd(b,a%b,y,x),y-=a/b*x;
}
ll Pow(ll a,ll p,ll P)
{
ll res=1;
for(;p>0;p>>=1,(a*=a)%=P)if(p&1)(res*=a)%=P;
return res;
}
ll inv(ll a,ll P){ll x,y;exgcd(a,P,x,y);return (x%P+P)%P;}
};
using namespace Maths;
namespace _NTT
{
int A[N<<1],B[N<<1];
int r[N<<1];
void NTT(int *a,int p,int n)
{
FOR(i,0,n-1)if(i<r[i])swap(a[i],a[r[i]]);
for(int i=2;i<=n;i<<=1)
{
int wn=Pow(g,(P-1)/i,P);
if(p==-1)wn=inv(wn,P);
for(int j=0;j<n;j+=i)
{
int w=1;
for(int k=0;k<i/2;k++)
{
int u=a[j+k],t=(ll)w*a[j+k+i/2]%P;
a[j+k]=(u+t)%P,a[j+k+i/2]=(u-t)%P;
w=(ll)w*wn%P;
}
}
}
}
void multiply(const int *a,const int *b,int *c,int n1,int n2)
{
int n=1;
while(n<n1+n2-1)n<<=1;
FOR(i,0,n1-1)A[i]=a[i];
FOR(i,0,n2-1)B[i]=b[i];
FOR(i,n1,n-1)A[i]=0;
FOR(i,n2,n-1)B[i]=0;
FOR(i,0,n-1)r[i]=(r[i>>1]>>1)|((i&1)*(n>>1));
NTT(A,1,n),NTT(B,1,n);
FOR(i,0,n-1)A[i]=(ll)A[i]*B[i]%P;
NTT(A,-1,n);
int I=inv(n,P);
FOR(i,0,n1+n2-2)c[i]=(ll)A[i]*I%P;
}
};
int A[N],B[N],C[N<<2];
int fac[N],c[N],S;
int n,m;
int main()
{
fac[0]=1;FOR(i,1,N-1)fac[i]=(ll)fac[i-1]*i%P;
while(~scanf("%d",&n))
{
FOR(i,0,n)scanf("%d",&c[i]);
scanf("%d",&m);
S=0;
while(m--)
{
int x;
scanf("%d",&x);
S-=x;
if(S<0)S+=P;
}
FOR(i,0,n)A[i]=(ll)c[i]*fac[i]%P;
FOR(i,-n,0)B[i+n]=Pow(S,-i,P)*inv(fac[-i],P)%P;
_NTT::multiply(A,B,C,n+1,n+1);
FOR(i,0,n)printf("%lld ",(C[i+n]*inv(fac[i],P)%P+P)%P);
puts("");
}
return 0;
}
HDU 6061 RXD and functions(NTT)的更多相关文章
- 【推导】【NTT】hdu6061 RXD and functions(NTT)
题意:给定一个n次多项式f(x)的各项系数,让你求f(x-Σai)的各项系数. http://blog.csdn.net/v5zsq/article/details/76780053 推导才是最关键的 ...
- 2017 Multi-University Training Contest - Team 3 RXD and functions(NTT)
题解: 我是参考的 http://blog.csdn.net/qq_32570675/article/details/76571666 这一篇 orz 原来可以这么变换,涨姿势 代码: #includ ...
- 2017 多校3 hdu 6061 RXD and functions
2017 多校3 hdu 6061 RXD and functions(FFT) 题意: 给一个函数\(f(x)=\sum_{i=0}^{n}c_i \cdot x^{i}\) 求\(g(x) = f ...
- HDU 6061 - RXD and functions | 2017 Multi-University Training Contest 3
每次NTT都忘记初始化,真的是写一个小时,Debug两个小时- - /* HDU 6061 - RXD and functions [ NTT ] | 2017 Multi-University Tr ...
- HDU 6061 RXD and functions NTT
RXD and functions Problem Description RXD has a polynomial function f(x), f(x)=∑ni=0cixiRXD has a tr ...
- hdu 1080 Human Gene Functions(DP)
题意: 人类基因由A.C.G.T组成. 有一张5*5的基因表.每格有一个值,叫相似度.例:A-C:-3.意思是如果A和C配对, 则它俩的相似度是-3[P.S.:-和-没有相似度,即-和-不能配对] 现 ...
- HDU 5829 Rikka with Subset(NTT)
题意 给定 \(n\) 个数 \(a_1,a_2,\cdots a_n\),对于每个 \(K\in[1,n]\) ,求出 \(n\) 个数的每个子集的前 \(K\) 大数的和,输出每个值,对 \(99 ...
- HDU 6061 RXD and functions
题目链接:HDU-6061 题意:给定f(x),求f(x-A)各项系数. 思路:推导公式有如下结论: 然后用NTT解决即可. 代码: #include <set> #include < ...
- HDU 6060 RXD and dividing(LCA)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6060 [题目大意] 给一个n个节点的树,要求将2-n号节点分成k部分, 然后将每一部分加上节点1, ...
随机推荐
- MQTT 发布者订阅者
添加依赖: <dependency> <groupId>org.eclipse.paho</groupId> <artifactId>org.eclip ...
- 使用yaml+groovy实现Java代码可配置化
背景与目标 在使用函数接口和枚举实现配置式编程(Java与Scala实现),使用了函数接口和枚举实现了配置式编程.读者可先阅读此文,再来阅读本文. 有时,需要将一些业务逻辑,使用配置化的方式抽离出来, ...
- vue路由5:命名视图
<div id="app"> <div> <router-link to="/">首页</router-link> ...
- Codeforce 814A - An abandoned sentiment from past (贪心)
A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since ...
- <转>jmeter(十一)JDBC Request之Query Type
本博客转载自:http://www.cnblogs.com/imyalost/category/846346.html 个人感觉不错,对jmeter讲解非常详细,担心以后找不到了,所以转发出来,留着慢 ...
- C++ for循环与迭代器
1.基本的for循环 std::vector<int> arr; ... for(std::vector<int>::iterator it=arr.begin();it!=a ...
- Linux 执行程序 报错误:Permission denied.
是对此文件所在位置没有权限导致的 chmod +x /home/yourfile 即可
- The Little Prince-12/02
The Little Prince-12/02 What moves me so deeply, about this little prince who is sleeping here, is h ...
- 【附】Python安装
Python是跨平台的,它可以运行在Windows.Mac和各种Linux/Unix系统上. 首先要实现Python安装及环境变量配置,然后会得到Python解释器(就是负责运行Python程序的), ...
- kswapd0 进程CPU占用过高
前几天遇到的一个问题,自己本地用VM配置的虚拟机,一般会top查看进程以及CPU占用的一些情况.又一次用laravel 打印对象,里面的内容比较多,浏览器当时就卡了. 然后看进程的情况.我以为会是ng ...