题目链接:https://vjudge.net/contest/59424#problem/A

题目大意:

有5种硬币, 面值分别为1、5、10、25、50,现在给出金额,问可以用多少种方式组成该面值。

解题思路:

首先我们可以想到,用这些硬币组成11有多少种.

就是组成10的种数,加上组成6的种数,加上组成1的种数,因为这些面值都是加上一枚硬币就得到11了.

然后我们又能继续去求1组成10的种数,那么明显就是9,5,0的组成数的和.

需要注意的是1+5自底向上的方法,需要注意的是1+5和5+1是一种的,所以要处理一下,从小往大排就不会错了。

这道题我还不是很懂,以后再看看。                           转载于>>>

记忆化搜索:很白痴的算法,直接交给下一层去算,算完记录下来以免之后重复算。

#include <cstdio>
#include <cstring>
const int MAXN = ;
const int coin[] = {, , , , };
int n;
long long dp[MAXN][]; long long solve(int i, int s) {
if (dp[s][i] != -)
return dp[s][i];
dp[s][i] = ;
for (int j = i; j < && s >= coin[j]; j++)
dp[s][i] += solve(j, s - coin[j]);
return dp[s][i];
} int main() {
memset(dp, -, sizeof(dp));
for (int i = ; i < ; i++)
dp[][i] = ;
while (scanf("%d", &n) != EOF)
printf("%lld\n", solve(, n));
return ;
}

递推:自底向上的方法,需要注意的是1+5和5+1是一种的,所以要处理一下,从小往大排就不会错了。

#include <cstdio>
const int MAXN = ;
int n, coin[] = {, , , , };
long long dp[MAXN] = {}; int main() {
for (int i = ; i < ; i++)
for (int j = ; j < MAXN - ; j++)
dp[j + coin[i]] += dp[j]; while (scanf("%d", &n) != EOF)
printf("%lld\n", dp[n]);
return ;
}

2018-04-30

uva 674 Coin Change 换钱币【完全背包】的更多相关文章

  1. UVA 674 Coin Change 换硬币 经典dp入门题

    题意:有1,5,10,25,50五种硬币,给出一个数字,问又几种凑钱的方式能凑出这个数. 经典的dp题...可以递推也可以记忆化搜索... 我个人比较喜欢记忆化搜索,递推不是很熟练. 记忆化搜索:很白 ...

  2. UVA.674 Coin Change (DP 完全背包)

    UVA.674 Coin Change (DP) 题意分析 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 每种硬币的数量是无限的.典型完全背包. 状态 ...

  3. UVA 674 Coin Change(dp)

    UVA 674  Coin Change  解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/ ...

  4. UVA 674 Coin Change 硬币转换(完全背包,常规)

    题意:有5种硬币,个数无限的,组成n元的不同方案有多少种? 思路:常规完全背包.重点在dp[0]=1,dp[j]中记录的是组成 j 元的方案数.状态转移方程dp[j+coin[i]]+=dp[j]. ...

  5. UVa 674 Coin Change(完全背包)

    https://vjudge.net/problem/UVA-674 题意: 计算兑换零钱的方法共有几种. 思路: 完全背包基础题. #include<iostream> #include ...

  6. UVA 674 Coin Change (完全背包)

    解法 dp表示目前的种数,要全部装满所以f[0]=1其余为0的初始化是必不可少的 代码 #include <bits/stdc++.h> using namespace std; int ...

  7. UVA 674 Coin Change (DP)

    Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make c ...

  8. UVa 674 Coin Change【记忆化搜索】

    题意:给出1,5,10,25,50五种硬币,再给出n,问有多少种不同的方案能够凑齐n 自己写的时候写出来方案数老是更少(用的一维的) 后来搜题解发现,要用二维的来写 http://blog.csdn. ...

  9. UVa 674: Coin Change

    动态规划题.对于1,5,10,25,50五种币值的硬币,编号为0~4,存入数组cent中.数组iWay的元素iWay[k][i]表示仅使用0~i的硬币凑出k分钱的方法数,按是否使用编号为i的硬币分类, ...

随机推荐

  1. [CQOI2011]放棋子 (DP,数论)

    [CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...

  2. Java并发编程(1)-Java内存模型

    本文主要是学习Java内存模型的笔记以及加上自己的一些案例分享,如有错误之处请指出. 一 Java内存模型的基础 1.并发编程模型的两个问题 在并发编程中,需要了解并会处理这两个关键问题: 1.1.线 ...

  3. Linux组管理和权限管理

    ⒈Linux组基本介绍 1)在Linux中的每个用户必须属于一个组,不能独立于组外. 2)Linux中每个文件都有所有者.所在组.其它组的概念 ①所有者 一般(默认)为文件的创建者,谁创建了该文件,就 ...

  4. Dubbo服务容错

    当一个服务调用另一个远程服务出现错误时的外观 Dubbo提供了多种容错方案,默认值为failover(重试) 1).Failover Cluster(默认) 失败自动切换,当出现失败,重试其他服务器, ...

  5. pytorch官网上两个例程

    caffe用起来太笨重了,最近转到pytorch,用起来实在不要太方便,上手也非常快,这里贴一下pytorch官网上的两个小例程,掌握一下它的用法: 例程一:利用nn  这个module构建网络,实现 ...

  6. 使用Jyhon脚本和PMI模块监控WAS性能数据

    使用Jyhon脚本和PMI模块监控WAS性能数据的优点有: 1.可以使用非交互的方式远程获取数据 2.不需要图形化模块支持 3.对各种was版本的兼容性较高 4.使用方便,官方自带 缺点也有很多: 1 ...

  7. discuz3.4:在Centos6.5中安装过程

    参考文章:https://www.cnblogs.com/hehongbin/articles/5741270.html https://www.cnblogs.com/mitang/p/552454 ...

  8. javascript NaN注意事项

    NaN直译是Not a number NaN是个特殊的number,它和任何值相比都不相等,甚至和它自己. NaN === NaN 这个表达式是false 唯一能判断NaN的方法是 IsNaN(NaN ...

  9. JavaScript对象简介(一)

    本节介绍js的9个对象:Array数组对象 Boolean(true false) Date日前对象 Math 数学对象 Number 数字对象 String 字符串对象 RegExp 正则表达式对象 ...

  10. 使用事件的preventDefault()方法改变默认行为

    事件有属性,还有方法,还有事件.事件本身是个对象^_^ 事件的preventDefault()方法改变默认行为,在事件发生前阻止,不让其发生.这样的应用场景有很多,常见表单验证,如必填字段不能为空. ...