奇异分解(SVD)
奇异分解
假设C是m×n矩阵,U是m×m矩阵,其中U的列为 的正交特征向量,V为n×n矩阵,其中V的列为
的正交特征向量,再假设r为C矩阵的秩,则存在奇异值分解:
其中和
的特征值相同,为
,且
。
是m
×n的矩阵, ,
。令
,则
。
称为矩阵C的奇异值。
所以有了矩阵C,可以求得或者
,从求得方阵
或者
的特征值,利用这些特征值得到
,从而求得
,求得
的时候已经求得U或者V。
例题:
,求A的奇异值分解。
解:
,
,
,
故 ,
当 时,特征向量为
,
,
,
标准化后 ,
,令
同理,先求 ,再求U。
,
当 时,特征向量
,
,
,
,
,
,
由此可知, ,
,a是一个常数,然后单位化
便得到
。
所以
,
最后得
---------------------------------------------------------------------------------
特征值分解——EVD
在这里,选择一种特殊的矩阵——对称阵(酉空间中叫hermite矩阵即厄米阵)。对称阵有一个很优美的性质:它总能相似对角化,对称阵不同特征值对应的特征向量两两正交。一个矩阵能相似对角化即说明其特征子空间即为其列空间,若不能对角化则其特征子空间为列空间的子空间。现在假设存在 的满秩对称矩阵A,它有m个不同的特征值,设特征值为
,对应的特征向量为
,则有:
U为的列是两两正交向量,所以它的逆矩阵等于转置矩阵。
奇异值分解——SVD
假设存在一个 矩阵A,A矩阵将n维空间中的向量映射到k
为空间中,
。目标:在n维空间中找一组正交基,使得经过A变换后还是正交的。
假设这组标准正交基为: ,则A矩阵将这组基映射为
,如果要使他们两两正交,即有以下关系
根据假设,也有以下关系:
所以如果选择v为 的特征向量的话,由于
是对称阵,v之间两两正交,那么
这样就找到了正交基使其映射后还是正交基了,现在,将映射后的正交基单位化:
所以
单位化:
由此得到关系:
从而得到
令 ,
则 是A的满秩分解。
Reference
http://blog.csdn.net/zhongkejingwang/article/details/43053513
奇异分解(SVD)的更多相关文章
- 使用矩阵分解(SVD)实现推荐系统
http://ling0322.info/2013/05/07/recommander-system.html 这个学期Web智能与社会计算的大作业就是完成一个推荐系统参加百度电影推荐算法大赛,成绩按 ...
- 多维数组分解----SVD在推荐系统中的应用-
http://www.janscon.com/multiarray/rs_used_svd.html [声明]本文主要参考自论文<A SINGULAR VALUE DECOMPOSITION A ...
- SVD分解及线性最小二乘问题
这部分矩阵运算的知识是三维重建的数据基础. 矩阵分解 求解线性方程组:,其解可以表示为. 为了提高运算速度,节约存储空间,通常会采用矩阵分解的方案,常见的矩阵分解有LU分解.QR分解.Cholesky ...
- SVD神秘值分解
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是由于SVD能够说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...
- SVD分解技术数学解释
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...
- PCA本质和SVD
一.一些概念 线性相关:其中一个向量可以由其他向量线性表出. 线性无关:其中一个向量不可以由其他向量线性表出,或者另一种说法是找不到一个X不等于0,能够使得AX=0.如果对于一个矩阵A来说它的列是线性 ...
- 从矩阵(matrix)角度讨论PCA(Principal Component Analysis 主成分分析)、SVD(Singular Value Decomposition 奇异值分解)相关原理
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilb ...
- SVD的概念以及应用
第十四章 利用SVD简化数据 一.引言 SVD的全称是奇异值分解,SVD的作用是它能够将高维的数据空间映射到低维的数据空间,实现数据约减和去除噪声的功能. SVD的特点主要有以下几个方面: 1.它的优 ...
- 推荐系统 SVD和SVD++算法
推荐系统 SVD和SVD++算法 SVD: SVD++: [Reference] 1.SVD在推荐系统中的应用详解以及算法推导 2.推荐系统——SVD/SVD++ 3.SVD++ 4.SVD++协 ...
随机推荐
- pyspider操作千万级库,pyspider在对接量级较大库的策略
pyspider操作千万级库,pyspider在对接量级较大库的策略 如果是需要pyspider正常的流程去执行,那必然是会在on_strat()时任务执行超时,可能只读取出几万条或十几万条数据就会被 ...
- tft屏图像文字一起显示
2010-05-04 21:06:00 M16内部flash只有16k,要做数码相框,只能用usart通信了.明天继续研究.
- GUI常用对话框3
%进度条 %waitbar h=waitbar(,'实例'); get(h); %获得进度条的子对象 get(get(h,'Children')) ha=get(h,'Children'); %获得坐 ...
- Spring Boot 整合Mybatis非starter时,mapper一直无法注入解决
本来呢,直接使用mybatis-spring-boot-starter还是挺好的,但是我们系统比较复杂,有多个数据源,其中一个平台自己的数据源,另外一些是动态配置出来的,两者完全没有关系.所以直接使用 ...
- AMQP 0.9.1和1.0协议差别以及rabbitmq支持情况
RabbitMQ implements AMQP 1.0 via a plugin. However, AMQP 1.0 is a completely different protocol than ...
- Android之数据存储之SharedPreferences
SharedPreferences是以键值对形式存储数据,主要用于记录系统的设置,如飞行模式是否开启,声音大小的值等.//SharedPreferences方式保存到xml文件SharedPrefer ...
- 对浏览器攻击:MS10-002
对浏览器攻击:MS10-002 MS10-002漏洞介绍 针对微软Internet Explorer"极光"内存损坏的攻击,当用户查看特制网页时允许远程执行代码. 实践过程 命令行 ...
- Codeforces 808G Anthem of Berland - KMP - 动态规划
题目传送门 传送点I 传送点II 传送点III 题目大意 给定一个字符串$s$,和一个字符串$t$,$t$只包含小写字母,$s$包含小写字母和通配符'?'.询问$t$可能在$s$中出现最多多少次. 原 ...
- AppStore 添加回复
itunes connect 评论位置 1, 2, 添加用户权限:除了管理和客户支持可以回复.开发人员等只有只读权限
- 使用SSH框架遇到的错误总结
1.org.hibernate.exception.ConstraintViolationException: could not insert: 如果是主键是自增序列,映射文件 指定主键生成器< ...