一、 RCNN系列的发展

1.1  R-CNN

根据以往进行目标检测的方法,在深度学习应用于目标检测时,同样首先尝试使用滑动窗口的想法,先对图片进行选取2000个候选区域,分别对这些区域进行提取特征以用来识别分割。

1.1.1   rcnn具体的步骤是:

步骤一:在imagenet分类比赛上寻找一个cnn模型,使用它用于分类的预训练权重参数;对于这个模型修改最后的分类层,分为21类,去掉最后一个全连接层,因为所用的测试集为20类,且还有一类背景类。

步骤二:根据选择性搜索来对输入的图像进行选取2000个候选区域框;

然后修改候选区域框的大小,以适应cnn的输入,然后用cnn来提取出每个候选区域的feature map。

步骤三:训练svm分类器,这个svm分类器是对于特定的某一类进行区分,是专门用来对特定敏感区域进行分类,每一个类别对应于一个SVM分类器

步骤四:使用回归器精细修正每个候选框的位置,对于每一个类,需要训练一个回归模型去判定这个框框的是否完美。

对应步骤的图片结构如下图1:

这里有几点需要补充的是:

1.      采用预训练和fine-tune来解决了标签数据不多的问题,在imagenet上训练过大规模图片集合的网络已经对图片的基本信息都有了很明确的收集,采用预训练模型后再在voc训练集上进行fine-tune会达到很好的效果。

2.      选择候选区域的几种方法:这里采用的是slective search

3.      训练过程:

在得到候选区域后,首先将候选区域跟gt(真实标注的框)来进行比较,如果iou>0.5(iou是图像分割里面对于判定两个不同区域的相似度所采用的一个标准)把这个候选区域置为正样本,否则就是负样本。Iou的取值相当重要,会对结果影响较大。

训练时候采用SGD方法来调整框的位置。

1.1.2  RCNN的缺点:

1.      训练过程太慢,需要对每一个候选区域都输入到cnn中再进行提取特征,极大的浪费了时间和精力。

2.      步骤相对较多,需要fine-tune预训练模型、训练SVM分类器、回归器进行精细的调整。

3.      占用空间大,提取出的特征以及分类器都需要占用额外的空间

4.      没有对资源进行重复利用,在使用SVM分类和对框进行回归操作的时候cnn模型的参数并没有同步修改。

1.2  Fast rcnn

针对RCNN的需要对每一个候选区域进行cnn操作这一繁琐操作进行改进,从而的到了fast-rcnn算法,

1.2.1  fast-rcnn的步骤如下:

步骤一:同样是寻找一个在imagenet上训练过的预训练cnn模型

步骤二:与rcnn一样,通过selective search在图片中提取2000个候选区域

步骤三:将一整个图片都输入cnn模型中,提取到图片的整体特征(这是相对于rcnn最大的改进的地方)

步骤四:把候选区域映射到上一步cnn模型提取到的feature map里

步骤五:采用rol pooling层对每个候选区域的特征进行上采样,从而得到固定大小的feature map,以便输入模型中

步骤六:根据softmax loss和smooth l1 loss对候选区域的特征进行分类和回归调整的过程,回归操作是对于框调整所使用的bou b reg来训练。

相比rcnn的不同处:

在得到每个候选区域的feature map后,通过rolpooling 层来进行上采样操作对尺寸进行调整以便时输入模型;

最后使用的loss函数为multi-task loss,然后是把回归操作加入到cnn权重更新的过程中去。

1.2.2优点有以下几点:

1.      fast-rcnn在训练的时候,把整张图片送入cnn网络进行提取特征,不需要像rcnn那样对每一个候选区域进行输入cnn,从而在cnn的利用上提高了很大的效率。

2.      训练速度相应提升,不需要svm分类器对提取后的特征进行存储数据,把图片的特征和候选区域直接送入loss,不需要对硬盘进行读写的操作。

3.      对网络的利用效率,用于分类和回归调整的功能都用cnn网络来实现,不需要额外的分类器和回归器。

但是fast-rcnn仍然有其缺陷,对于生成候选区域仍然不够快速,所以faster-rcnn针对这一点进行改进,提出使用rpn网络来生成候选区域。同时提出的rpn网络可以与目标检测同时共享一个cnn的网络参数,减少参数的数量。

二  Faster rcnn的基本原理

2.1  faster rcnn的原理及结构

前面介绍了rcnn以及fast-rcnn,基础知识已经做好铺垫,接下来将介绍rcnn系列的最后一种算法faster-rcnn的详细内容。Faster-rcnn的主要原理如下:

Faster-rcnn是Ross B.Girshick在2016年在r-cnn和Fast-rcnn的基础上提出来的,最大的亮点之处是faster-rcnn把获取feature map,候选区域选取,回归和分类等操作全部融合在一个深层网络当中,效率较前两种提升了很多。

Faster-rcnn的基本结构如下图:

Faster-rcnn在结构上主要由一下几部分构成:

1.      卷积层,这部分卷积层就是普通的由imagenet比赛上用于分类的预训练模型所用的卷积层,它的主要功能是用来提取整张图片的feature map,卷积层结构也是卷积+激活函数+池化操作组成的。

2.      RPN网络,这是整个faster-rcnn的核心部分,改善了前两种方法用选择搜索来获取候选区域的方法,这种方法不仅快速而且更加高效地利用了cnn网络。在生成候选区域的时候会生成anchors,然后内部通过判别函数判断anchors属于前景还是后景,然后通过边框回归来进行第一次调整anchors获取准确的候选区域。

3.      Roi pooling,这一层的添加主要是为了解决最后输入全连接层的feature map的尺寸大小不同的问题,通过上采样来获取固定大小。

4.      分类和回归,最后通过两个分类层和回归层来分别判断物体属于哪个类别以及精细调整候选区域的位置,以获取最终目标检测的结果。

RCNN系列算法的发展的更多相关文章

  1. 【目标检测】R-CNN系列与SPP-Net总结

    目录 1. 前言 2. R-CNN 2.0 论文链接 2.1 概述 2.2 pre-training 2.3 不同阶段正负样本的IOU阈值 2.4 关于fine-tuning 2.5 对文章的一些思考 ...

  2. R-CNN系列阅读笔记

    之前感觉研究的还是不够透彻,这次彻底从头到尾研究一下. R-CNN系列 R-CNN 本文发表于2014年. 背景及整体框架 背景:将CNN在图像分类领域的成功(2012年)应用于目标检测上面.检测问题 ...

  3. RCNN系列、Fast-RCNN、Faster-RCNN、R-FCN检测模型对比

    RCNN系列.Fast-RCNN.Faster-RCNN.R-FCN检测模型对比 一.RCNN 问题一:速度 经典的目标检测算法使用滑动窗法依次判断所有可能的区域.本文则预先提取一系列较可能是物体的候 ...

  4. 深度学习与CV教程(12) | 目标检测 (两阶段,R-CNN系列)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  5. 挑战目标跟踪算法极限,SiamRPN系列算法解读

    商汤科技智能视频团队首次开源其目标跟踪研究平台 PySOT.PySOT 包含了商汤科技 SiamRPN 系列算法,以及刚被 CVPR2019 收录为 Oral 的 SiamRPN++.此篇文章将解读目 ...

  6. 目标检测复习之Faster RCNN系列

    目标检测之faster rcnn系列 paper blogs1: 一文读懂Faster RCNN Faster RCNN理论合集 code: mmdetection Faster rcnn总结: 网络 ...

  7. 标题 发布状态 评论数 阅读数 操作 操作 CNN目标检测系列算法发展脉络简析——学习笔记(三):Fast R-CNN

    最近两周忙着上网课.投简历,博客没什么时间写,姑且把之前做的笔记放上来把... 下面是我之前看论文时记的笔记,之间copy上来了,内容是Fast R-CNN的,以后如果抽不出时间写博客,就放笔记上来( ...

  8. CNN目标检测系列算法发展脉络——学习笔记(一):AlexNet

    在咨询了老师的建议后,最近开始着手深入的学习一下目标检测算法,结合这两天所查到的资料和个人的理解,准备大致将CNN目标检测的发展脉络理一理(暂时只讲CNN系列部分,YOLO和SSD,后面会抽空整理). ...

  9. 目标检测之R-CNN系列

    Object Detection,在给定的图像中,找到目标图像的位置,并标注出来. 或者是,图像中有那些目标,目标的位置在那.这个目标,是限定在数据集中包含的目标种类,比如数据集中有两种目标:狗,猫. ...

随机推荐

  1. select cast(round(12.5,2) as numeric(5,2))

    http://www.jb51.net/article/74284.htm 解释: round()函数,是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置小数四舍五入的精度. )--32. ...

  2. SMB服务简介

      1.Samba简介 Samba是种自由软件,用来让UNIX系列的操作系统与微软Windows操作系统的SMB/CIFS(Server Message Block/Common Internet F ...

  3. [No0000168]Excle只允许用户输入纯文本,禁止用户修改单元格样式、格式等

    背景:自己的模板给别人,让他填完信息上传到系统里,但别人经常不按模板的格式来填写,导致无法程序自动化.能不能在模板上把格式锁住,只允许输入纯文本,但不能改格式? 方法: 步骤一,创建你要的模板 其中, ...

  4. AngularJs $watch监听模型变化

    $watch是一个scope函数,用于监听模型变化,当你的模型部分发生变化时它会通知你. $watch(watchExpression, listener, objectEquality); 举个栗子 ...

  5. 查询大数据表的效率对比:Linq to SQL、Entity Framework、企业库存储过程、ADO.Net

    最近因为要开发大数据量网站,特作比较. Linq to SQL 查询 记录数:399997Linq to SQL 查询 Milliseconds:1910视图查询 记录数:399997视图查询 Mil ...

  6. The General Query Log Binary Log

    https://dev.mysql.com/doc/refman/8.0/en/binary-log.html https://dev.mysql.com/doc/refman/8.0/en/quer ...

  7. [apr] Apache Portable Runtime

    接手新项目,前任大量的使用了APR,虽然不影响理解主逻辑,但是看见一行不知道干嘛的代码,总是特别炸眼. 况且,虽然我从来不跨平台.但是APR如此优秀,学习理解它都不是浪费时间. 可是让人崩溃的是,竟然 ...

  8. 斜率优化&单调性优化的相似性

    写了一道单调性优化发现 跟斜率优化很像,而且这道题目感觉质量非常的好. 其实斜率优化是基于单调性优化的,但是面对这道题 我竟然连单调性优化都不太会,尽管这个模型非常不好理解. 对于每道题 我都会打一个 ...

  9. Xshell远程连接 与 Xftp文件传输

    刚开始接触Linux的时候,会想我该怎么在Windows连接到另一台Linux服务器,怎么把我Windows上的文件放到我Linux上面,网上搜索之后,知道可以用Xshell远程连接到Linux,用X ...

  10. Python 标准输出 sys.stdout 重定向(转)

    add by zhj: 其实很少使用sys.stdout,之前django的manage.py命令的源码中使用了sys.stdout和sys.stderr,所以专门查了一下 这两个命令与print的区 ...