LightOJ - 1246 Colorful Board(DP+组合数)
http://lightoj.com/volume_showproblem.php?problem=1246
题意
有个(M+1)*(N+1)的棋盘,用k种颜色给它涂色,要求曼哈顿距离为奇数的格子之间不能涂相同的颜色,每个格子都必须有颜色,问可行的方案数。
分析
经一波分析,根据曼哈顿距离为奇数这一信息,可以将棋盘分为两部分,也就是相邻格子不能有相同颜色。一种颜色只能在一个部分中出现。现在考虑对一个部分的格子操作,
dp[i][j]表示i个格子选择用了j种颜色的方案数,于是可以得到这样的递推式:dp[i][j]=dp[i-1][j-1]*j+dp[i-1][j]*j。得到dp数组后还不够,需要枚举两个部分使用的颜色数,两层循环,其中选择颜色的方案数则用组合数来算。
#include<iostream>
#include<cmath>
#include<cstring>
#include<queue>
#include<vector>
#include<cstdio>
#include<algorithm>
#include<map>
#include<set>
#define rep(i,e) for(int i=0;i<(e);i++)
#define rep1(i,e) for(int i=1;i<=(e);i++)
#define repx(i,x,e) for(int i=(x);i<=(e);i++)
#define X first
#define Y second
#define PB push_back
#define MP make_pair
#define mset(var,val) memset(var,val,sizeof(var))
#define scd(a) scanf("%d",&a)
#define scdd(a,b) scanf("%d%d",&a,&b)
#define scddd(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define pd(a) printf("%d\n",a)
#define scl(a) scanf("%lld",&a)
#define scll(a,b) scanf("%lld%lld",&a,&b)
#define sclll(a,b,c) scanf("%lld%lld%lld",&a,&b,&c)
#define IOS ios::sync_with_stdio(false);cin.tie(0)
using namespace std;
typedef long long ll;
template <class T>
void test(T a){cout<<a<<endl;}
template <class T,class T2>
void test(T a,T2 b){cout<<a<<" "<<b<<endl;}
template <class T,class T2,class T3>
void test(T a,T2 b,T3 c){cout<<a<<" "<<b<<" "<<c<<endl;}
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const ll mod = 1e9+;
int T;
void testcase(){
printf("Case %d: ",++T);
}
const int MAXN = 3e5+;
const int MAXM = ; ll dp[][],C[][];
void init(){
mset(C,);
for(int i=;i<;i++){
C[i][]=;
for(int j=;j<=i;j++){
C[i][j]=(C[i-][j]+C[i-][j-])%mod;
}
}
for(int i=;i<;i++){
dp[i][]=;
for(int j=;j<;j++){
dp[i][j]=(dp[i-][j]*j+dp[i-][j-]*j)%mod; }
}
} int main() {
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
init();
int t;
scd(t);
T=;
while(t--){
int m,n,k;
scddd(m,n,k);
m++,n++;
ll ans=;
if(m==n&&m==) ans=k;
else{
int n1=(n+)/*((m+)/)+n/*(m/);
int n2=m*n-n1;
for(int i=;i<k;i++){
for(int j=;i+j<=k;j++){
ans=(ans+(C[k][i]*C[k-i][j])%mod*((dp[n1][i]*dp[n2][j])%mod))%mod;
}
}
}
testcase();
cout<<ans<<endl;
}
return ;
}
LightOJ - 1246 Colorful Board(DP+组合数)的更多相关文章
- LightOJ - 1246 - Colorful Board(DP)
链接: https://vjudge.net/problem/LightOJ-1246 题意: You are given a rectangular board. You are asked to ...
- 1246 - Colorful Board
1246 - Colorful Board PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB ...
- noj 2033 一页书的书 [ dp + 组合数 ]
传送门 一页书的书 时间限制(普通/Java) : 1000 MS/ 3000 MS 运行内存限制 : 65536 KByte总提交 : 53 测试通过 : 1 ...
- 【区间dp+组合数+数学期望】Expression
https://www.bnuoj.com/v3/contest_show.php?cid=9148#problem/I [题意] 给定n个操作数和n-1个操作符,组成一个数学式子.每次可以选择两个相 ...
- lightoj 1095 - Arrange the Numbers(dp+组合数)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095 题解:其实是一道简单的组合数只要推导一下错排就行了.在这里就推导一下错排 ...
- hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)
DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...
- Contest 20140708 testB dp 组合数
testB 输入文件: testB.in 输出文件testB.out 时限3000ms 问题描述: 定义这样一个序列(a1,b1),(a2,b2),…,(ak,bk)如果这个序列是方序列的话必须满足 ...
- lightoj 1032 二进制的dp
题目链接:http://lightoj.com/volume_showproblem.php?problem=1032 #include <cstdio> #include <cst ...
- HDU 5396 Expression(DP+组合数)(详解)
题目大意: 给你一个n然后是n个数. 然后是n-1个操作符,操作符是插入在两个数字之间的. 由于你不同的运算顺序,会产生不同的结果. 比如: 1 + 1 * 2 有两种 (1+1)*2 或者 ...
随机推荐
- ThinkPad E470 win10,重装win10专业版后无声音
解决办法: 1.官网下载笔记本对应的声卡驱动并安装 2.下载热键驱动并安装 3.重启笔记本即可 参考:https://blog.csdn.net/u012369373/article/details/ ...
- 【转帖】MYSQL 8.0 忘记密码的简单处理。--init-file
Copy From https://www.cnblogs.com/wangjiming/p/10363357.html mysql 不熟悉 但是感觉语法的确与oracle越来越像了. 感谢原作者 我 ...
- java.util.concuttent Callable Future详解
在传统的多线程实现方式中(继承Thread和实现Runnable)无法直接获取线程执行的返回结果,如果需要获取执行结果,就必须通过共享变量或者使用线程通信的方式来达到效果,这样使用起来就比较麻烦. 从 ...
- Baltic Dry Index
波罗的海干散货指数(Baltic Dry Index,缩写BDI),是航运业的经济指标,它包含了航运业的干散货交易量的转变. BDI波罗的海指数是由几条主要航线的即期运费(Spot Rate)加权计算 ...
- BZOJ1304 CQOI2009叶子的染色(树形dp)
令f[i]表示i子树内最少染色次数,加上012状态分别表示该子树内叶节点已均被满足.存在黑色叶节点未被满足.存在白色叶节点未被满足,考虑i节点涂色情况即可转移.事实上贪心也可以. #include&l ...
- Web Scraper爬取就是这么简单
这应该是最全的一个文档了 https://www.jianshu.com/p/e4c1561a3ea7 所以我就不介绍了,大家直接看就可以了,有问题可以提出来,我会针对问题对文章进行补充~
- 快乐的Lambda表达式(二)
转载:http://www.cnblogs.com/jesse2013/p/happylambda-part2.html 快乐的Lambda表达式 上一篇 背后的故事之 - 快乐的Lambda表达式( ...
- day26 单继承
继承是创建新类的一种方式,目的就为了减少代码.表达了子类是父类的关系,比如狗是动物,教授是老师一个类可以多个类继承,所有语言都是这样的一个类可以继承多个父类 ,只有python支持多继承子类可以找到父 ...
- 13 Zabbix Item类型之Zabbix ODBC类型
点击返回:自学Zabbix之路 13 Zabbix Item类型之Zabbix ODBC类型 ODBC是C语言开发的.用于访问数据库的中间件接口 . zabbix支持查询任何ODBC支持的数据库.za ...
- GDB最常用的命令
为了调试我的指针LCT--我学会了如何使用gdb! 粘一个常用命令表(原文地址:https://blog.csdn.net/tzshlyt/article/details/53668885) gcc ...