We define the smallest positive real number as the number which is explicitly greater than zero and yet less than all other positive real numbers except itself.
The smallest positive real number, if exists, implies the existence of the second greater positive real number after it, which subtracts the smallest positive real number equals the smallest positive real number. The difference between the second greater positive real number and smallest positive real number could not be any other positive real number greater than the smallest positive real number, otherwise there must be a number with the magnitude of twice the smallest positive real number between the smallest positive real number and the second greater positive real number, which contradicts to the definition of the second greater positive real number, that is there is no number between it and the the smallest positive real number. Follow the same meaning, one could define the third greater positive real number which subtracts the second greater positive real number equals the smallest positive real number, then the 4th greater positive real number, 5th, ...this would finally make the set of positive real number countable, while Cantor already proved the set of positive real number is uncountable using the diagonal argument.
The smallest positive real number, if exists, also implies the existence of the indivisible unit. The smallest positive real number is not legitimate to divide, otherwise one would get numbers less than the smallest positive real number, which contradicts to the definition of the smallest positive real number. N.B. the conclusion is conducted out in terms of assuming the existence of the smallest positive real number. In such a number system, the ultimate unit of measurement would be the smallest positive real number, based on such idea one would be eventually led to the world of atomism.
The Greek scientist Democritus (about 460– 380 B.C.) apparently considered solids as "sums" of a tremendous number of extremely small "indivisible" atoms (don't get confused with that in chemistry). Democritus held that his atoms, being not only very small but the smallest possible particles of matter, were not only too small to be divided physically but also logically indivisible. In such a system, the ultimate unit of measurement would be the size of an atom.
Obviously, the atom unit size is equal to the smallest positive real number. However, Euclidean geometry, in particular, the Pythagorean theorem denies the existence of such indivisible atom size, therefore denied the existence of the indivisible unit-the smallest positive real number.
Consider any geometrical figures (e.g., squares, triangles, etc.) with line segments as sides from atomism, then the length of each side will be measured in atoms, and each side will be assigned an integer as its measure. (Each side will be n atomic units long, where n is a positive integer.) Now consider an isosceles right triangle with side composed of 100 atoms, how many atoms its hypotenuse includes? Using the Pythagorean theorem \(\sqrt{100^2 + 100^2}=\sqrt{2\times 100^2}=100\sqrt{2}\), the hypotenuse includes \(100\sqrt{2}\) atoms, while \(100\sqrt{2}\) is not a whole number. And notice that this is true irrespective of the size of the side, so the situation does not change if we suppose that the side of the isosceles right triangle are composed of a very large number of very small “space atoms”. Even if the sides are billions of atoms long, the length of the hypotenuse will still be an irrational number of such atoms. Let \(a\), the whole number of atoms in the side of a isosceles right triangle, be as large as you like, and let \(c\) be the number of atoms in the hypotenuse; \(c\) will still be an irrational number, for \(c = a\sqrt{2}\) . This means that there is no integer \(c\) such that the hypotenuse of an isosceles right triangle is \(c\) space atoms long if its side is some integer \(n\) space atoms long. To put it another way, the diagonal and the side of a square cannot both be measured atomistically.
In one word, the smallest positive real number doesn't exist !

为什么实数系里不存在最小正数?(Why the smallest positive real number doesn't exist in the real number system ?)的更多相关文章

  1. Java输出double类型中的最小正数和最大正数

    这是<写给大忙人看的java核心技术>中的一道练习题. 1. 输出最大正数值 System.out.println(Double.MAX_VALUE); 直接输出包装类Double的MAX ...

  2. Leetcode之二分法专题-744. 寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target)

    Leetcode之二分法专题-744. 寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target) 给定一个只包含小写字母的有序数组letters  ...

  3. LeetCode 41. 缺失的第一个正数(First Missing Positive)

    题目描述 给定一个未排序的整数数组,找出其中没有出现的最小的正整数. 示例 1: 输入: [1,2,0] 输出: 3 示例 2: 输入: [3,4,-1,1] 输出: 2 示例 3: 输入: [7,8 ...

  4. [Swift]LeetCode483. 最小好进制 | Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  5. C#LeetCode刷题之#744-寻找比目标字母大的最小字母(Find Smallest Letter Greater Than Target)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/4001 访问. 给定一个只包含小写字母的有序数组letters 和 ...

  6. 【ZOJ 3609】Modular Inverse 最小乘法逆元

    The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x  ...

  7. ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)

    Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative ...

  8. OPTM-Optimal Marks-SPOJ839最小割

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...

  9. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

随机推荐

  1. 【转】Java异常总结和Spring事务处理异常机制浅析

    异常的概念和Java异常体系结构 异常是程序运行过程中出现的错误.本文主要讲授的是Java语言的异常处理.Java语言的异常处理框架,是Java语言健壮性的一个重要体现. Thorwable类所有异常 ...

  2. 第三部分:Android 应用程序接口指南---第二节:UI---第十章 拖放

    第10章 拖放 使用Android的拖放框架,允许用户通过一个图形化的拖放动作,把数据从当前布局中的一个视图上转移到另一个视图上.这个框架包含了一个拖动事件类,拖动监听器和一些辅助的方法和类. 虽然这 ...

  3. [k8s]jenkins部署在k8s集群

    $ cat jenkins-pvc.yaml kind: PersistentVolumeClaim apiVersion: v1 metadata: name: jenkins-pvc spec: ...

  4. Fiddler插件开发 - 实现网站离线浏览功能

    有这么一种应用场景: 你是做前端或APP开发的,需要调用服务端提供的接口,接口只能在公司内网访问:在公司外就无法调试代码了. 想在公司外访问怎么办呢? 如果在公司的时候将所有接口的响应内容都保存起来, ...

  5. Socket网络编程--简单Web服务器(1)

    这一次的Socket系列准备讲Web服务器.就是编写一个简单的Web服务器,具体怎么做呢?我也不是很清楚流程,所以我找来了一个开源的小的Web服务器--tinyhttpd.这个服务器才500多行的代码 ...

  6. 【Netty】通俗地讲,Netty 能做什么?

    作者:郭无心链接:https://www.zhihu.com/question/24322387/answer/78947405来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明 ...

  7. [APM] 解读2016之APM国内篇:快速增长的APM市场和技术

    前言 2016年是APM技术和市场快速发展的一年,在这一年里APM市场特别是国内的市场取得了极大的增长,用户对APM价值的认识和接受度也有了很大的提升,国内市场已基本完成了用户教育和市场培养的阶段.与 ...

  8. 【Unity】ShareSDK、SMSSDK的基本使用与常见问题

    概要 测试使用ShareSDK的一些常用功能.包括: 用微博帐号做第三方登录 获取用户的帐号详细信息 获取好友列表 分享功能 测试使用SMSSDK插件,包括: 导入插件,解决包冲突 短信登录功能:发验 ...

  9. Math.Round四舍六入五取偶Math.Ceiling只要有小数都加1Math.Floor总是舍去小数

    1.Math.Round:四舍六入五取偶 引用内容 Math.Round(0.0) //0Math.Round(0.1) //0Math.Round(0.2) //0Math.Round(0.3) / ...

  10. Java知多少(25)再谈Java包

    在Java中,为了组织代码的方便,可以将功能相似的类放到一个文件夹内,这个文件夹,就叫做包. 包不但可以包含类,还可以包含接口和其他的包. 目录以"\"来表示层级关系,例如 E:\ ...