BZOJ 2694: Lcm [莫比乌斯反演 线性筛]
题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\)
无平方因子数?搞一个\(\mu(gcd(i,j))\)不就行了..不对不对有正负,是\(\mu^2\)才行
套路推♂倒 (ノ*・ω・)ノ
\sum\limits_{i=1}^n \sum\limits_{j=1}^m \frac{ij}{gcd(i,j)} \mu(gcd(i,j))^2
&=\sum_{d=1}^n d\ \mu(d^2) \sum_{i=1}^{\frac{n}{d}} \sum_{j=1}^{\frac{m}{d}}ij[gcd(i,j)=1]\\
&= \sum_{D=1}^n D\sum_{d|D} \mu(d)^2 \mu(\frac{D}{d})\frac{D}{d} \ f(\frac{n}{D}, \frac{m}{D}) \\
\end{align*}
\]
woc那是个smg,自己卷自己? $g(i) = i \cdot ((\mu \cdot \mu) * (\mu \cdot id))(i) $
如果我没猜错,点乘和卷积没有什么律吧
\(g(1) = 1\)
\(g(p) = p*(1-p)\)
观察那堆\(\mu\),分成的两个因子都有的话,相同的质数必须一边一个啊要不就是0没贡献了
考虑\(p \mid i\),\(i\)中还至少有一个\(p\),我们记录最小质因子的次数判断一下\(ip\)的质因子多于2个\(g(ip)=0\)了,正好两个的话肯定是一面一个,结果就是\(g(\frac{i}{p})*(-p)\)啊...不对不对,前面的\(i\)让你吃了?应该是\(*(-p\cdot p^2)\)
貌似还有更科学的想法,i除掉p后两个就互质了...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N=4e6+5, INF=1e9, P = 1<<30;
#define pii pair<int, int>
#define MP make_pair
#define fir first
#define sec second
typedef long long ll;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int n, m;
int notp[N], p[N], cp[N]; ll g[N];
void sieve(int n) {
g[1] = 1;
for(int i=2; i<=n; i++) {
if(!notp[i]) p[++p[0]] = i, g[i] = i*(1-i), cp[i] = 1;
for(int j=1; j<=p[0] && i*p[j]<=n; j++) {
int t = i*p[j];
notp[t] = 1;
if(i%p[j] == 0) {
cp[t] = cp[i]+1;
if(cp[t] <= 2) g[t] = g[i/p[j]] * (-p[j] * p[j] * p[j]) %P;
else g[t] = 0;
break;
}
cp[t] = 1;
g[t] = g[i] * g[p[j]];
}
}
for(int i=1; i<=n; i++) (g[i] += g[i-1]) %=P;
}
inline ll f(ll n, ll m) {return ( n*(n+1)/2 %P) * ( m*(m+1)/2 %P)%P;}
ll cal(int n, int m) {
ll ans=0; int r;
for(int i=1; i<=n; i=r+1) {
r = min(n/(n/i), m/(m/i));
( ans += (g[r] - g[i-1]) * f(n/i, m/i) )%=P;
}
return (ans+P)%P;
}
int main() {
//freopen("in","r",stdin);
sieve(N-1);
int T=read();
while(T--) {
n=read(); m=read();
if(n>m) swap(n, m);
printf("%lld\n", cal(n, m));
}
}
BZOJ 2694: Lcm [莫比乌斯反演 线性筛]的更多相关文章
- 【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...
- BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常
求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$ $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- [bzoj] 2694 Lcm || 莫比乌斯反演
原题 定义整数a,b,求所有满足条件的lcm(a,b)的和: 1<=a<=A 1<=b<=B ∀n>1,n2†gcd(a,b)(即任意n>1,\(n^2\)不是gc ...
- 【bzoj2693】jzptab 莫比乌斯反演+线性筛
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】
看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...
- BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...
随机推荐
- hdu_1045Fire Net(二分图匹配)
hdu_1045Fire Net(二分图匹配) 标签: 图论 二分图匹配 题目链接 Fire Net Time Limit: 2000/1000 MS (Java/Others) Memory Lim ...
- 学习Spring必学的Java基础知识(2)----动态代理
Spring AOP使用动态代理技术在运行期织入增强的代码,为了揭示Spring AOP底层的工作机理,有必要对涉及到的Java知识进行学习.Spring AOP使用了两种代理机制:一种是基于JDK的 ...
- chorme调试Paused in debugger问题解决
最近出现的问题,使用chorme调试代码总是这个状态(Paused in debugger[debug的时候暂停了]): 一刷新就这样,非常的不舒服.当然你可以选择多按几次F8跳出,下面提供几种方式解 ...
- Micropython TPYBoard 智能温控小风扇资料分享
南方都下大雪了,苦逼的北方还没下雪,天寒地冻,不过这几天办公室空调开太大了就想到做一个温控小风扇,简单模型出来了.等夏天一定做一个美观精致的小风扇送给女朋友(如果有的话QAQ)话不多说直接上干货.(跪 ...
- php匹配图片、视频文件、音乐文件的正则表达式
$pattern_video = "/(src)=(\\\?)([\"|']?)([^ \"'>]+\.(swf|flv|mp4|rmvb|avi|mpeg|ra| ...
- 百度地图API显示多个标注点带百度样式信息检索窗口的代码
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Redis 数据结构与内存管理策略(下)
Redis 数据结构与内存管理策略(下) 标签: Redis Redis数据结构 Redis内存管理策略 Redis数据类型 Redis类型映射 Redis 数据类型特点与使用场景 String.Li ...
- 给外行或者刚入门普及一下关于C#,.NET Framework(.NET框架),.Net,CLR,ASP,ASP.Net, VS,以及.NET Core的概念
一.概念 1. C# :C#是微软公司发布的一种面向对象的.运行于.NET Framework之上的高级程序设计语言. 2..NET Framework(.NET框架):.NET framework ...
- CCF系列之最优灌溉(201412-4)
试题编号:201412-4试题名称:最优灌溉时间限制: 1.0s内存限制: 256.0MB 问题描述 雷雷承包了很多片麦田,为了灌溉这些麦田,雷雷在第一个麦田挖了一口很深的水井,所有的麦田都从这口井来 ...
- JVM之GC算法