count()聚合计算

count()是聚合函数,对于返回的结果集,一行行地判断,累计值加1,最后返回累计值,count(*)、count(主键ID)和count(1)表示返回满足条件的结果集的总行数。

count()聚合函数统计非NULL与NULL值的区别:

1、count(字段)不统计NULL记录,即表示满足条件的数据行里参数字段不为NULL的行

2、count(1)和count(*)会记录NULL值

count(主键ID)、count(字段)、count(1)、count(*)的区别和性能差异(分析性能差别的原则)
  1、server层要什么就给什么 
  2、InnoDB只给必要的值
  3、现在的优化器对count(*)的取行数做了优化,其他没有做优化
 
count(主键ID)比count(1)慢的原因
  对于 count(主键 ID) 来说,InnoDB 引擎会遍历主键索引树,把每一行的ID值取出来,返回给server层,server层拿到ID后,判断是不可能为空的,按行累加加1,最后返回累计值。
  对于count(1),InnoDB引擎会扫描主键索引树,但不取值,server层对于返回的每一行,按行累计加1,判断不可能为NULL,返回累计值。
  从InnoDB引擎层返回ID会涉及到解析数据行、拷贝字段值的操作,因此count(主键 ID)执行要比count(1)执行慢。
 
count(字段)
  1、如果这个字段定义为not null的话,一行行地从记录里面读出这个字段,判断不能为null,按行累计加1
  2、如果这个字段定义允许为null,一行行地从记录里面读出这个字段,执行的时候还要判断是否为null,不为null的按行累计加1,返回累加值
  
count(主键id)走主键索引的时候效率较count(*)差的原因?
  平时我们检索一列的时候,基本上等值或范围查询,那么索引基数大的索引必然效率很高(符合走主键索引查找速度最快的原则)。
  但是在做count(*)的时候并没有检索具体的一行或者一个范围,那么选择基数小的索引对count操作效率会更高。在做count操作的时候,mysql会遍历每个叶子节点,所以基数越小,效率越高。mysql非聚簇索引叶子节点保存指向主键ID的指针,所以需要检索两遍索引。但是这里相对于遍历主键索引,即使检索两遍索引效率也比单纯的检索主键索引快。
  Innodb是索引组织表,主键索引树的叶子节点是数据,而普通索引树的叶子节点是主键值,索引普通索引树小很多,索引长度越小树的大小就越小。
 
MyISAM与InnoDB,正如在不同的存储引擎中,count(*)函数的执行是不同的
  在MyISAM存储引擎中,count()函数是直接读取数据表保存的行记录数并返回,效率很高,但是如果添加了where条件的话,MyISAM表也不能返回得很快。
  在InnoDB存储引擎中,count(*)函数是先从内存中读取表中的数据到内存缓冲区,然后扫描全表获得行记录数。在使用count函数中加上where条件时,在两个存储引擎中的效果是一样的,都会扫描全表计算某字段有值项的次数。
count(*)中关于select count(*) from tab_name几种不走索引和走那种索引情景分析
CREATE TABLE `t1` (
`c1` varchar(30) NOT NULL,
`c2` varchar(20) NOT NULL,
`c3` varchar(40) NOT NULL,
`c4` varchar(10) DEFAULT NULL)
ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='ceshi_count'

1、表中没有任何索引(表也没有主键)

mysql> explain select count(*) from t1;
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
| 1 | SIMPLE | t1 | ALL | NULL | NULL | NULL | NULL | 1 | NULL |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
1 row in set (0.01 sec)

2、表有主键则执行主键索引全扫描

mysql> alter table t1 add primary key (c1);
Query OK, 0 rows affected (0.16 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> explain select count(*) from t1;
+----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | t1 | index | NULL | PRIMARY | 92 | NULL | 1 | Using index |
+----+-------------+-------+-------+---------------+---------+---------+------+------+-------------+
1 row in set (0.00 sec)

3、表有二级索引,则使用二级索引key_len最小的索引进行扫描,尽管这个二级索引的key_len的值大于主键,都使用二级索引

mysql> alter table t1 add index idx_c3(c3);
Query OK, 0 rows affected (0.04 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> explain select count(*) from t1;
+----+-------------+-------+-------+---------------+--------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+---------------+--------+---------+------+------+-------------+
| 1 | SIMPLE | t1 | index | NULL | idx_c3 | 122 | NULL | 1 | Using index |
+----+-------------+-------+-------+---------------+--------+---------+------+------+-------------+
1 row in set (0.00 sec)

4、表有多个二级索引,则使用key_len小的二级索引进行扫描

mysql> alter table t1 add index idx_t1_c4(c4);
Query OK, 0 rows affected (0.03 sec)
Records: 0 Duplicates: 0 Warnings: 0 mysql> explain select count(*) from t1;
+----+-------------+-------+-------+---------------+-----------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+---------------+-----------+---------+------+------+-------------+
| 1 | SIMPLE | t1 | index | NULL | idx_t1_c4 | 33 | NULL | 1 | Using index |
+----+-------------+-------+-------+---------------+-----------+---------+------+------+-------------+
1 row in set (0.00 sec)
取表行数的几种方式
  1、count(*)取行数
  2、通过infomation_schema可以快速拿到表的count值,但不是一个准确的值,通过show table status like 'tab_name'查找到的table rows是通过采样方式得到行数,它的误差率达到了40到50%,
  3、MyISAM会存储具体的行数(可能因为myISAM事务要加表锁,才这样设计),InnoDB则需要进行全表扫描

count()聚合函数正确用法的更多相关文章

  1. having,groub by 结合聚合函数的用法解析

    聚合函数有:sum , count, avg, max等等: where无法与聚合函数一起使用,所以在sql语句中加上having子句来筛选查询结果: 上面的sql语句是错的,正确如下: SELECT ...

  2. Django查找数据库objects.filter() 排序order_by Q()与或非 F()属性之间比较 聚合函数的用法

    条件选取QuerySet的时候,filter表示=参数可以写查询条件,exclude表示!=,querySet.distinct() 去重复(除了get返回值都是QuerySet,可以继续调用所有函数 ...

  3. oracle聚合函数XMLAGG用法简介

    XMLAGG函数语法基本如图,可以用于列转行,列转行函数在oracle里有好几种方法,wm_concat也可以做 这里介绍wm_concat是因为XMLAGG实现效果和wm_concat是一样的,只是 ...

  4. sql中having、group by用法及常用聚合函数

    having是用在聚合函数的用法.当我们在用聚合函数的时候,一般都要用到GROUP BY 先进行分组,然后再进行聚合函数的运算.运算完后就要用到HAVING 的用法了,就是进行判断了. 注意:sele ...

  5. group by 和聚合函数

    group by 的基本用法 group by做为分组来使用,后面为条件,可以有多个条件,条件相同的为一组,配合聚合函数进行相关统计.在不同数据库中用法稍有不同,这里只测试mysql和oracle. ...

  6. sqlserver的over开窗函数(与排名函数或聚合函数一起使用)

    首先初始化表和数据 create table t_student(   Id INT,   Name varchar(),   Score int,   ClassId INT ); insert i ...

  7. LitePal的聚合函数

    传统的聚合函数用法   虽说是聚合函数,但它的用法其实和传统的查询还是差不多的,即仍然使用的是select语句.但是在select语句当中我们通常不会再去指定列名,而是将需要统计的列名传入到聚合函数当 ...

  8. 72.Python中ORM聚合函数详解:Avg,aggregate,annotate

    聚合函数: 如果你用原生SQL语句,则可以使用聚合函数提取数据.比如提取某个商品销售的数量,那么就可以使用Count,如果想要知道销售的平均价格,那么就可以使用Avg. 聚合函数是通过aggregat ...

  9. Django(18)聚合函数

    前言 orm模型中的聚合函数跟MySQL中的聚合函数作用是一致的,也有像Sum.Avg.Count.Max.Min,接下来我们逐个介绍 聚合函数 所有的聚合函数都是放在django.db.models ...

随机推荐

  1. BZOJ_2734_[HNOI2012]集合选数_构造+状压DP

    BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...

  2. Python Django 2.2登录功能_2

    #Now 让我们继续对上篇的登录进行操作 #对于csrf,以后再开篇章记录 #修改index.html <form method="post" action="/l ...

  3. laravel 5.4中手动创建分页

    这里是参考的的链接https://blog.csdn.net/hxx_yang/article/details/51753134 use Illuminate\Pagination\LengthAwa ...

  4. Android P Beta发布!最新版本抢先体验!

    在不久前结束的谷歌I/O开发者大会上,谷歌公布了下一个版本的 Android,也就是 Android P 的 beta 版本.Android P 将 AI 定位为操作系统的核心,并侧重于提供智能且简洁 ...

  5. 【爆料】-《伯明翰大学学院毕业证书》UCB一模一样原件

    ☞伯明翰大学学院毕业证书[微/Q:865121257◆WeChat:CC6669834]UC毕业证书/联系人Alice[查看点击百度快照查看][留信网学历认证&博士&硕士&海归 ...

  6. SQL Server事务 事务日志

    事务 (SQL Server) 一.事务概念    事务是一种机制.是一种操作序列,它包含了一组数据库操作命令,这组命令要么全部执行,要么全部不执行.因此事务是一个不可分割的工作逻辑单元.在数据库系统 ...

  7. pyqt5将图片插入面板

    from PyQt5.QtWidgets import * from PyQt5 import QtCore,QtWidgets from PyQt5.QtGui import * import sy ...

  8. ASP.NET Core 实战:构建带有版本控制的 API 接口

    一.前言 在上一篇的文章中,主要是搭建了我们的开发环境,同时创建了我们的项目模板框架.在整个前后端分离的项目中,后端的 API 接口至关重要,它是前端与后端之间进行沟通的媒介,如何构建一个 “好用” ...

  9. WinForm加载外部类库项目的集成开发模式

    在项目开发中有一定的团队用到了Nuget.Coding:但是这用起来还是不太方方便,在Winform中呢,我们可以把一个人的项目当作一个类库项目,因为它生成的是一个dll文件,也就是单一文件,拥有了它 ...

  10. 史上最最靠谱,又双叒叒简单的基于MSXML的XML解析指南-C++

    目录 史上最最靠谱,又双叒叒简单的基于MSXML的XML解析指南 流程设计 xml信息有哪几种读取形式(xml文件或wchar) 如何选取节点,and取节点属性有哪些方法? IXMLDOMNode与I ...