完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980

第13章       STM32H7启动过程详解

本章教程主要跟大家讲STM32H7的启动过程,这里的启动过程是指从CPU上电复位执行第1条指令开始(汇编文件)到进入C程序main()函数入口之间的部分。启动过程相对来说还是比较重要的,理解了这个过程,对于以后分析程序还是有些帮助的,要不每次看到这个启动过程都会跳过,直接去看主程序了。还有就是以后打算学习RTOS的话,对于这个过程必须有个了解,因为移植的时候涉及到中断向量表。对初学者来说,看这个可能有些吃力,不过不要紧,随着自己做过一些简单的应用之后再来看这章,应该会有很多的帮助,由于我们的V7板子是基于STM32H7XXX,所以我们这里主要针对H7系列的启动过程做一下分析,对于F1,F4系列也是大致相同的。

13.1 初学者重要提示

13.2 各个版本的启动文件介绍

13.3 启动文件分析

13.4 BOOT启动模式

13.5 总结

13.1 初学者重要提示

1、  如果觉得学习本章节吃力的话,推荐看我们早期做的入门视频教程第8章,同样适用于STM32H7。

http://www.armbbs.cn/forum.php?mod=viewthread&tid=15408 。

2、  相比F1,F4的启动方式,H7的启动方式更灵活些,只需一个boot引脚即可。但是一个引脚只能区分出两个状态,为了解决这个问题,H7专门配套了两个option bytes选项字节来解决此问题。

13.2 各个版本的启动文件介绍

这里各个版本的意思是指不同的编译器、不同的H7系列对应的启动文件。

13.2.1 不同编译器对应的启动文件

打开我们为本教程提供的工程文件,路径如下:

\Libraries\CMSIS\Device\ST\STM32H7xx\Source\Templates 在这个文件里面有ST官方为各个编译器提供的启动文件。

看了上面的截图,大家会问怎么没有KEIL MDK呢?其实已经被放在了文件夹arm里面,KEIL公司已经在2005年被ARM公司收购了。开发板大部分例程都是配套了MDK和IAR两个版本,这里重点给大家分析一下MDK的启动文件分析,IAR和MDK的大同小异。

13.2.2 不同H7系列对应的启动文件

先来看一下ARM文件夹里面的文件(2018-07-03,当前只有如下两个系列,后期ST会增加新的型号,相应的启动文件也会添加进来):

如果是H743系列,就使用startup_stm32h743xx.s文件,如果是H753系列,就使用startup_stm32h753xx文件。当前H743和753系列对应的型号如下:

我们再来打开IAR文件夹里面的文件:

多了一个linker文件夹,用于IAR配置的ICF文件:

而启动文件跟MDK里面的一样,一个是用H743系列,另一个是用于H753系列。

13.3 启动文件分析

鉴于V7开发板使用的是STM32H743XI,下面我们详细的分析一下启动文件startup_stm32h743xx.s。分析前,先掌握一个小技能,遇到不认识的指令或者关键词可以检索。

  • 启动 MDK软件,在Help菜单点击 uVision Help

  • 点击后弹出如下文件

在搜索栏输入你需要查询的单词进行查询,然后点击“列出主题”按钮,会将相关的知识点都罗列出来。此功能非常实用,建议熟练掌握。

下面先来看启动文件前面的介绍 (固件库版本:V1.2.0)

;******************** (C) COPYRIGHT  STMicroelectronics ********************
;* File Name : startup_stm32h743xx.s
;* @author MCD Application Team
;* version : V1.2.0
;* Date : -December-
;* Description : STM32H7xx devices vector table for MDK-ARM toolchain.
;* This module performs:
;* - Set the initial SP
;* - Set the initial PC == Reset_Handler
;* - Set the vector table entries with the exceptions ISR address
;* - Branches to __main in the C library (which eventually
;* calls main()).
;* After Reset the Cortex-M processor is in Thread mode,
;* priority is Privileged, and the Stack is set to Main.
;* <<< Use Configuration Wizard in Context Menu >>>
;*******************************************************************************
;
; Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
; You may not use this file except in compliance with the License.
; You may obtain a copy of the License at:
;
; http://www.st.com/software_license_agreement_liberty_v2
;
; Unless required by applicable law or agreed to in writing, software
; distributed under the License is distributed on an "AS IS" BASIS,
; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
; See the License for the specific language governing permissions and
; limitations under the License.
;
;*******************************************************************************

启动文件是后缀为.s的汇编语言文本文件,每行前面的分号表示此行是注释行。

启动文件主要完成如下工作,即程序执行过程:

-      设置堆栈指针SP = __initial_sp。

-      设置PC指针 = Reset_Handler。

-      设置中断向量表。

-      配置系统时钟。

-      配置外部SRAM/SDRAM用于程序变量等数据存储(这是可选的)。

-      跳转到C库中的 __main ,最终会调用用户程序的main()函数。

Cortex-M内核处理器复位后,处于线程模式,指令权限是特权级别(最高级别),堆栈设置为使用主堆栈MSP。

13.3.1 复位序列

硬件复位之后,CPU 内的时序逻辑电路首先完成如下两个工作(程序代码下载到内部flash为例,flash首地址0x0800 0000)

  • 将0x08000000位置存放的堆栈栈顶地址存放到SP中(MSP)。
  • 将0x08000004 位置存放的向量地址装入 PC 程序计数器。

CPU 从 PC 寄存器指向的物理地址取出第 1 条指令开始执行程序,也就是开始执行复位中断服务程序 Reset_Handler。

复位中断服务程序会调用SystemInit()函数来配置系统时钟、配置FMC总线上的外部SRAM/SDRAM,然后跳转到C 库中__main 函数。由C库中的__main 函数完成用户程序的初始化工作(比如:变量赋初值等),最后由__main 函数调用用户写的 main()函数开始执行 C 程序。

13.3.2 代码分析

  •   第1部分代码分析

下面的代码实现开辟栈(stack)空间,用于局部变量、函数调用、函数的参数等。

.    ; Amount of memory (in bytes) allocated for Stack
. ; Tailor this value to your application needs
. ; <h> Stack Configuration
. ; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:>
. ; </h>
.
. Stack_Size EQU 0x00000400
.
. AREA STACK, NOINIT, READWRITE, ALIGN=
. Stack_Mem SPACE Stack_Size
. __initial_sp

第7行:EQU 是表示宏定义的伪指令,类似于 C 语言中的#define。伪指令的意思是指这个“指令”并不会生成二进制程序代码,也不会引起变量空间分配。

0x00000400 表示栈大小,注意这里是以字节为单位。

第9行:开辟一段数据空间可读可写,段名 STACK,按照 8 字节对齐。ARER 伪指令表示下面将开始定义一个代码段或者数据段。此处是定义数据段。ARER 后面的关键字表示这个段的属性。

STACK :表示这个段的名字,可以任意命名。

NOINIT:表示此数据段不需要填入初始数据。

READWRITE:表示此段可读可写。

ALIGN=3 :表示首地址按照 2 的 3 次方对齐,也就是按照 8 字节对齐(地址对8求余数等于0)。

第10行:SPACE 这行指令告诉汇编器给 STACK 段分配 0x00000400 字节的连续内存空间。

第11行: __initial_sp 紧接着 SPACE 语句放置,表示了栈顶地址。__initial_sp 只是一个标号,标号主要用于表示一片内存空间的某个位置,等价于 C 语言中的“地址”概念。地址仅仅表示存储空间的一个位置,从 C 语言的角度来看,变量的地址,数组的地址或是函数的入口地址在本质上并无区别。

  • 第2部分代码分析

下面的代码实现开辟堆(heap)空间,主要用于动态内存分配,也就是说用 malloc,calloc, realloc等函数分配的变量空间是在堆上。

.    ; <h> Heap Configuration
. ; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:>
. ; </h>
.
. Heap_Size EQU 0x00000200
.
. AREA HEAP, NOINIT, READWRITE, ALIGN=
. __heap_base
. Heap_Mem SPACE Heap_Size
. __heap_limit

这几行语句和上面第1部分代码类似。分配一片连续的内存空间给名字叫 HEAP 的段,也就是分配堆空间。堆的大小为 0x00000200。

__heap_base 表示堆的开始地址。

__heap_limit 表示堆的结束地址。

  •   第3部分代码分析
.                    PRESERVE8
. THUMB
.
.
. ; Vector Table Mapped to Address at Reset
. AREA RESET, DATA, READONLY
. EXPORT __Vectors
. EXPORT __Vectors_End
. EXPORT __Vectors_Size

第1行:PRESERVE8 指定当前文件保持堆栈八字节对齐。

第2行:THUMB表示后面的指令是THUMB指令集 ,CM7采用的是THUMB - 2指令集。

第6行:AREA定义一块代码段,只读,段名字是 RESET。READONLY 表示只读,缺省就表示代码段了。

第7-9行:3 行EXPORT语句将 3 个标号申明为可被外部引用, 主要提供给链接器用于连接库文件或其他文件。

  •   第4部分代码分析
.    __Vectors       DCD     __initial_sp                      ; Top of Stack
. DCD Reset_Handler ; Reset Handler
. DCD NMI_Handler ; NMI Handler
. DCD HardFault_Handler ; Hard Fault Handler
.
. 中间部分省略未写
.
. DCD ; Reserved
. DCD WAKEUP_PIN_IRQHandler ; Interrupt for all wake-up pins
.
.
. __Vectors_End
.
. __Vectors_Size EQU __Vectors_End - __Vectors

上面的这段代码是建立中断向量表,中断向量表定位在代码段的最前面。具体的物理地址由链接器的配置参数(IROM1 的地址)决定。如果程序在 Flash 运行,则中断向量表的起始地址是 0x08000000。

以MDK为例,就是如下配置选项:

DCD 表示分配 1 个 4 字节的空间。每行 DCD 都会生成一个 4 字节的二进制代码。中断向量表存放的实际上是中断服务程序的入口地址。当异常(也即是中断事件)发生时,CPU 的中断系统会将相应的入口地址赋值给 PC 程序计数器,之后就开始执行中断服务程序。

  •   第5部分代码分析
.                    AREA    |.text|, CODE, READONLY
.
. ; Reset handler
. Reset_Handler PROC
. EXPORT Reset_Handler [WEAK]
. IMPORT SystemInit
. IMPORT __main
.
. LDR R0, =SystemInit
. BLX R0
. LDR R0, =__main
. BX R0
. ENDP

第1行:AREA 定义一块代码段,只读,段名字是 .text 。READONLY 表示只读。

第4行:利用 PROC、ENDP 这一对伪指令把程序段分为若干个过程,使程序的结构加清晰。

第5行:WEAK 声明其他的同名标号优先于该标号被引用,就是说如果外面声明了的话会调用外面的。 这个声明很重要,它让我们可以在C文件中任意地方放置中断服务程序,只要保证C函数的名字和向量表中的名字一致即可。

第6行:IMPORT:伪指令用于通知编译器要使用的标号在其他的源文件中定义。但要在当前源文件中引用,而且无论当前源文件是否引用该标号,该标号均会被加入到当前源文件的符号表中。

第9行:SystemInit 函数在文件system_stm32h7xx.c 里面,主要实现RCC相关寄存器复位和中断向量表位置设置。

第11行:__main 标号表示C/C++标准实时库函数里的一个初始化子程序__main 的入口地址。该程序的一个主要作用是初始化堆栈(跳转__user_initial_stackheap 标号进行初始化堆栈的,下面会讲到这个标号),并初始化映像文件,最后跳转到 C 程序中的 main函数。这就解释了为何所有的 C 程序必须有一个 main 函数作为程序的起点。因为这是由 C/C++标准实时库所规,并且不能更改。

  •   第6部分代码分析

代码如下:

.    ; Dummy Exception Handlers (infinite loops which can be modified)
.
. NMI_Handler PROC
. EXPORT NMI_Handler [WEAK]
. B .
. ENDP
. HardFault_Handler\
. PROC
. EXPORT HardFault_Handler [WEAK]
. B .
. ENDP
.
. 中间部分省略未写
. Default_Handler PROC
.
. EXPORT WWDG_IRQHandler [WEAK]
. EXPORT PVD_AVD_IRQHandler [WEAK]
. EXPORT TAMP_STAMP_IRQHandler [WEAK]
. 中间部分省略未写
. SAI4_IRQHandler
. WAKEUP_PIN_IRQHandler
.
. B .
.
. ENDP
.
. ALIGN

第5行:死循环,用户可以在此实现自己的中断服务程序。不过很少在这里实现中断服务程序,一般多是在其它的C文件里面重新写一个同样名字的中断服务程序,因为这里是WEEK弱定义的。如果没有在其它文件中写中断服务器程序,且使能了此中断,进入到这里后,会让程序卡在这个地方。

第14行:缺省中断服务程序(开始)

第23行:死循环,如果用户使能中断服务程序,而没有在C文件里面写中断服务程序的话,都会进入到这里。比如在程序里面使能了串口1中断,而没有写中断服务程序USART1_IRQHandle,那么串口中断来了,会进入到这个死循环。

第25行:缺省中断服务程序(结束)。

  •   第7部分代码分析

启动代码的最后一部分:

.    ;*******************************************************************************
. ; User Stack and Heap initialization
. ;*******************************************************************************
. IF :DEF:__MICROLIB
.
. EXPORT __initial_sp
. EXPORT __heap_base
. EXPORT __heap_limit
.
. ELSE
.
. IMPORT __use_two_region_memory
. EXPORT __user_initial_stackheap
.
. __user_initial_stackheap
.
. LDR R0, = Heap_Mem
. LDR R1, =(Stack_Mem + Stack_Size)
. LDR R2, = (Heap_Mem + Heap_Size)
. LDR R3, = Stack_Mem
. BX LR
.
. ALIGN
.
. ENDIF
.
. END

第4行:简单的汇编语言实现IF…….ELSE…………语句。如果定义了MICROLIB,那么程序是不会执行ELSE分支的代码。__MICROLIB可能大家并不陌生,就在MDK的Target Option里面设置。

第5行:__user_initial_stackheap将由__main函数进行调用。

  •  MicroLib

MicroLib是MDK里面带的微库,针对嵌入式应用,MicroLIB做了深度优化,比使用C标准库所需的RAM和FLASH空间都大大减小比如调用:

<math.h>,<stdlib.h>,<stdio.h>,<string.h>

更多相关知识可以地址:http://www.keil.com/arm/microlib.asp。另外注意microlib只有库,没有源文件。下图是标准库和微库生成代码的比较。

13.4 BOOT启动模式

相比F1,F4的启动方式,H7的启动方式更灵活些,只需一个boot引脚即可。但是一个引脚只能区分出两个状态,为了解决这个问题,H7专门配套了两个option bytes选项字节配置,如此以来就可以方便设置各种存储器地址了。

BOOT_ADD0和BOOT_ADD1对应32位地址到高16位,这点要特别注意。通过这两个选项字节,所有0x0000 0000到0x3FFF 0000的存储器地址都可以设置,包括:

  • 所有Flash地址空间。
  • 所有RAM地址空间,ITCM,DTCM和SRAM。

设置了选项字节后,掉电不会丢失,下次上电或者复位后,会根据BOOT引脚状态从BOOT_ADD0,或BOOT_ADD1所设置的地址进行启动。

使用BOOT功能,注意以下几个问题:

  • 如果用户不慎,设置的地址范围不在有效的存储器地址,那么BOOT = 0时,会从Flash首地址0x0800 0000启动,BOOT = 1时,会从ITCM首地址0x0000 0000启动。
  • 如果用户使能了Flash Level 2保护,那么只能从Flash地址空间进行启动。
  •   F1,F4的启动方式

作为对比,这里补充F1,F4的启动方式,由BOOT0和BOOT1引脚共同决定。

13.5 总结

本章节讲解的启动过程分析还是比较重要的,忘初学者务必掌握。

【STM32H7教程】第13章 STM32H7启动过程详解的更多相关文章

  1. Linux启动过程详解(inittab、rc.sysinit、rcX.d、rc.local)

    启动第一步--加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至于计算机必须在最开始就找到它.这是因为BIOS中包含了CPU的相关信息.设备启动顺序信息.硬 ...

  2. Linux启动过程详解

    Linux启动过程详解 附上两张图,加深记忆 图1: 图2: 第一张图比较简洁明了,下面对第一张图的步骤进行详解: 加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的 ...

  3. Android 核心分析 之八Android 启动过程详解

    Android 启动过程详解 Android从Linux系统启动有4个步骤: (1) init进程启动 (2) Native服务启动 (3) System Server,Android服务启动 (4) ...

  4. fabric网络环境启动过程详解

    这篇文章对fabric的网络环境启动过程进行讲解,也就是我们上节讲到的启动测试fabric网络环境时运行network_setup.sh这个文件的执行流程 fabric网络环境启动过程详解 上一节我们 ...

  5. (转)Linux 开机引导和启动过程详解

    Linux 开机引导和启动过程详解 编译自:https://opensource.com/article/17/2/linux-boot-and-startup作者: David Both 原创:LC ...

  6. linux 开机启动过程详解

    Linux开机执行内核后会启动init进程,该进程根据runlevel(如x)执行/etc/rcx.d/下的程序,其下的程序是符号链接,真正的程序放在/etc/init.d/下.开机启动的程序(服务等 ...

  7. linux驱动由浅入深系列:PBL-SBL1-(bootloader)LK-Android启动过程详解之一(高通MSM8953启动实例)

    转自:http://blog.csdn.net/radianceblau/article/details/73229005 http://www.aiuxian.com/article/p-14142 ...

  8. [转载] Linux启动过程详解-《别怕Linux编程》之八

    本原创文章属于<Linux大棚>博客,博客地址为http://roclinux.cn.文章作者为rocrocket.为了防止某些网站的恶性转载,特在每篇文章前加入此信息,还望读者体谅. = ...

  9. 转-Linux启动过程详解(inittab、rc.sysinit、rcX.d、rc.local)

    http://blog.chinaunix.net/space.php?uid=10167808&do=blog&id=26042   1)BIOS自检2)启动Grub/Lilo3)加 ...

随机推荐

  1. GitHub awesome Resource

    各种Awesome技术资源的资源聚合: https://github.com/sindresorhus/awesome Contents Platforms Programming Languages ...

  2. Android面试题摘录

    本文中面试题全部选自<精通Android>(英文名“Pro android 4”)一书的章后面试题,不过这套面试题与书中内容结合比较紧密,所以选择使用时请谨慎. ####C2:Androi ...

  3. Future与Promise

    https://code.csdn.NET/DOC_Scala/chinese_scala_offical_document/file/Futures-and-Promises-cn.md#ancho ...

  4. 如何利用Python网络爬虫抓取微信朋友圈的动态(上)

    今天小编给大家分享一下如何利用Python网络爬虫抓取微信朋友圈的动态信息,实际上如果单独的去爬取朋友圈的话,难度会非常大,因为微信没有提供向网易云音乐这样的API接口,所以很容易找不到门.不过不要慌 ...

  5. Oracle知识梳理(三)操作篇:SQL基础操作汇总

    Oracle知识梳理(三)操作篇:SQL基础操作汇总 一.表操作 1.表的创建(CREATE TABLE): 基本语句格式:       CREATE TABLE  table_name ( col_ ...

  6. php根据地球上任意两点的经纬度计算两点间的距离 原理

    地球是一个近乎标准的椭球体,它的赤道半径为6378.140千米,极半径为6356.755千米,平均半径6371.004千米.如果我们假设地球是一个完美的球体,那么它的半径就是地球的平均半径,记为R.如 ...

  7. 分布式单点登录框架XXL-SSO

    <分布式单点登录框架XXL-SSO> 一.简介 1.1 概述 XXL-SSO 是一个分布式单点登录框架.只需要登录一次就可以访问所有相互信任的应用系统. 拥有"轻量级.分布式.跨 ...

  8. 前端开发APP,从HBuilder开始~ 【转】

    内容简介 介绍目前前端人员开发app的几种方法,具体介绍hbuilder开发app,一扇赞新的大门~ 无所不能的js 最开始js仅仅局限于网页上一些效果,操作网页内容等, 但是nodejs把js带入了 ...

  9. java中new关键字和newInstance()方法的区别

    1> new是一个关键字,可以说是一个指令: newInstance()是一个方法,Class对象的一个方法. 2> new主要作用是在内存中生成一个实例,而这个类可以没有提前加载到内从中 ...

  10. HTML 返回顶部

    每次看淘宝,看微信,都回有回到顶部的小logo,小图标,或者双击返回顶部.所以就学习了如何返回顶部的操作,一开始是联想html中的链接描点,在开头出设置个标签,下面点击另外一个标志回去.有三种觉得比较 ...