Luogu3768简单的数学题
题目描述

题解
我们在一通化简上面的式子之后得到了这么个东西。

前面的可以除法分块做,后面的∑T2∑dµ(T/d)是积性函数,可以线性筛。
然后这个数据范围好像不太支持线性筛,所以考虑杜教筛。
后面那个东西是个id*µ,恰好等于φ。
所以我们求得东西就变成了i2φ。
由于φ*I=id。所以我们令g(i)=i2,f(x)=i2φ,f*g=i3
于是这道题就做完了。
附:1^2+2^2+3^2+...+n^2=n*(n+1)*(2*n+1)/6,1^3+2^3+...+n^3=(1+2+3+..+n)^2。
代码
#include<iostream>
#include<cstdio>
#include<map>
#define N 5000009
using namespace std;
typedef long long ll;
map<ll,ll>mp;
const int maxn=;
ll mod,ans,inv2,inv6,k,phi[N],n;
int prime[N];
bool vis[N];
inline ll rd(){
ll x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
inline ll power(ll x,ll y){
ll ans=;
while(y){if(y&)ans=ans*x%mod;x=x*x%mod;y>>=;}
return ans;
}
inline void prework(){
ll k;
phi[]=;
for(int i=;i<=maxn;++i){
if(!vis[i]){prime[++prime[]]=i;phi[i]=i-;}
for(int j=;j<=prime[]&&(k=i*prime[j])<=maxn;++j){
vis[i*prime[j]]=;
if(i%prime[j]==){phi[i*prime[j]]=phi[i]*prime[j];break;}
else phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
for(int i=;i<=maxn;++i)phi[i]=(phi[i]*i%mod*i%mod+phi[i-])%mod;
}
inline ll sum(ll x){return x%mod*(x+)%mod*inv2%mod;}
inline ll pf(ll x){return x%mod*x%mod;}
inline ll pfsum(ll x){return x%mod*(x+)%mod*(*x%mod+)%mod*inv6%mod;}
ll get_phi(ll n){
if(n<=maxn)return phi[n];
if(mp.find(n)!=mp.end())return mp[n];
ll ans=pf(sum(n));ll r;
for(ll l=;l<=n;l=r+){
r=n/(n/l);
ll x=((pfsum(r)-pfsum(l-))%mod+mod)%mod;
ans=(ans-x*get_phi(n/l)%mod+mod)%mod;
}
return mp[n]=ans;
}
int main(){
mod=rd();n=rd();
inv2=power(,mod-);inv6=power(,mod-);
prework();
ll l,r;
for(l=;l<=n;l=r+){
r=n/(n/l);
ans+=pf(sum(n/l))*(get_phi(r)-get_phi(l-))%mod;
ans=(ans%mod+mod)%mod;
}
cout<<ans;
return ;
}
Luogu3768简单的数学题的更多相关文章
- 【学术篇】luogu3768 简单的数学题(纯口胡无代码)
真是一道"简单"的数学题呢~ 反演题, 化式子. \[ ans=\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j) \\ =\sum_{i=1}^n\sum_{j ...
- [Luogu3768]简单的数学题
题面戳我 题意:求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}ij\gcd(i,j)\] \(n\le10^{10}\) sol \[ans=\sum_{d=1}^{n}d\sum_ ...
- [luogu3768] 简单的数学题 [杜教筛]
题面: 传送门 实际上就是求: 思路: 看到gcd就先反演一下,过程大概是这样: 明显的一步反演 这里设,S(x)等于1到x的和 然后把枚举d再枚举T变成先枚举T再枚举其约数d,变形: 后面其中两项展 ...
- 【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)
[Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\( ...
- 【数学】HPU--1037 一个简单的数学题
1037: 一个简单的数学题 [数学] 时间限制: 1 Sec 内存限制: 128 MB提交: 259 解决: 41 统计 题目描述 小明想要知道$a^b$的值,但是这个值会非常的大. 所以退而求其次 ...
- 【LG3768】简单的数学题
[LG3768]简单的数学题 题面 求 \[ (\sum_{i=1}^n\sum_{j=1}^nij\text{gcd}(i,j))\text{mod}p \] 其中\(n\leq 10^{10},5 ...
- luoguP3768 简单的数学题
题目链接 luoguP3768 简单的数学题 题解 上面那个式子的最后一步,需要定理 用数学归纳法证明 \(S1=1^3=1^2\) \(S2=1^3+2^3=9=3^2=(1+2)^2\) \(S3 ...
- 洛谷 P3768 简单的数学题 解题报告
P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...
- loj#6229 这是一道简单的数学题
\(\color{#0066ff}{ 题目描述 }\) 这是一道非常简单的数学题. 最近 LzyRapxLzyRapx 正在看 mathematics for computer science 这本书 ...
随机推荐
- 2014年第五届蓝桥杯javaB组 试题 答案 解析
1.武功秘籍 小明到X山洞探险,捡到一本有破损的武功秘籍(2000多页!当然是伪造的).他注意到:书的第10页和第11页在同一张纸上,但第11页和第12页不在同一张纸上. 小明只想练习该书的第81页到 ...
- javascript排序算法-归并排序
归并排序 概念:归并排序是一种分治算法.其思想是将原始数组切分成较小的数组,直到每个小数组只有一个位置,接着将小数组归并成较大的数组,直到最后只有一个排序完毕的大数组. 时间复杂度: O(nlogn) ...
- 第二次上机,ASP内置对象的使用
3.新建Reg.asp文档,参照1中的Reg.html,通过VBScript服务器端脚本代码实现 ”班级” Select表单的自动生成,如下所示: 注:通过循环语句,采用Response.Write命 ...
- linux下mysql区分大小写的内容
1.数据库名严格区分大小写2.表名严格区分大小写的3.表的别名严格区分大小写4.变量名严格区分大小写5.列名在所有的情况下均忽略大小写6.列的别名在所有的情况下均忽略大小写
- MyDAL - .IsExistAsync() 使用
索引: 目录索引 一.API 列表 .IsExistAsync() 用于 单表 / 多表连接 查询 二.API 单表-便捷 方法 举例 1.单表-便捷, 判断是否存在方法 var date = Dat ...
- 回归算法比较(线性回归,Ridge回归,Lasso回归)
代码: # -*- coding: utf-8 -*- """ Created on Mon Jul 16 09:08:09 2018 @author: zhen &qu ...
- sqlserver数据库NULL类型注意事项
1,变量NULL类型赋值需要初始化 2,判断条件
- Java设置接口跨域
现在我们很多项目都是基于Java的REST结构风格前后端分离,在前端访问后端的时候就存在跨域,这个时候后端接口不处理就会存在访问不了.上代码! 1.创建一个Filter 在web.xml中配置 < ...
- CSS3中三角形及三角形组合图实现
几何之三角形及三角形的组合图案理论 三角形( triangle ['traɪæŋɡl])可以看成正方形对角线交叉形成的图形 若想得到编号①方向向下三角形,只需对编号②③④三角形让其透明tran ...
- HelloHibernate的创建过程
文章提纲 安装与配置 开发小结 建立项目 配置项目 创建代码 执行项目 安装与配置 JDK的安装:建议使用JRE 1.8以上: SQL Server 2000的安装:建议SQL Server 2000 ...