1. function [sys,x0,str,ts,simStateCompliance] = sfuntmpl(t,x,u,flag)
  2. %SFUNTMPL General MATLAB S-Function Template
  3. % With MATLAB S-functions, you can define you own ordinary differential
  4. % equations (ODEs), discrete system equations, and/or just about
  5. % any type of algorithm to be used within a Simulink block diagram.
  6. %
  7. % The general form of an MATLAB S-function syntax is:
  8. % [SYS,X0,STR,TS,SIMSTATECOMPLIANCE] = SFUNC(T,X,U,FLAG,P1,...,Pn)
  9. %
  10. % What is returned by SFUNC at a given point in time, T, depends on the
  11. % value of the FLAG, the current state vector, X, and the current
  12. % input vector, U.
  13. %
  14. % FLAG RESULT DESCRIPTION
  15. % ----- ------ --------------------------------------------
  16. % [SIZES,X0,STR,TS] Initialization, return system sizes in SYS,
  17. % initial state in X0, state ordering strings
  18. % in STR, and sample times in TS.
  19. % DX Return continuous state derivatives in SYS.
  20. % DS Update discrete states SYS = X(n+)
  21. % Y Return outputs in SYS.
  22. % TNEXT Return next time hit for variable step sample
  23. % time in SYS.
  24. % Reserved for future (root finding).
  25. % [] Termination, perform any cleanup SYS=[].
  26. %
  27. %
  28. % The state vectors, X and X0 consists of continuous states followed
  29. % by discrete states.
  30. %
  31. % Optional parameters, P1,...,Pn can be provided to the S-function and
  32. % used during any FLAG operation.
  33. %
  34. % When SFUNC is called with FLAG = , the following information
  35. % should be returned:
  36. %
  37. % SYS() = Number of continuous states.
  38. % SYS() = Number of discrete states.
  39. % SYS() = Number of outputs.
  40. % SYS() = Number of inputs.
  41. % Any of the first four elements in SYS can be specified
  42. % as - indicating that they are dynamically sized. The
  43. % actual length for all other flags will be equal to the
  44. % length of the input, U.
  45. % SYS() = Reserved for root finding. Must be zero.
  46. % SYS() = Direct feedthrough flag (=yes, =no). The s-function
  47. % has direct feedthrough if U is used during the FLAG=
  48. % call. Setting this to is akin to making a promise that
  49. % U will not be used during FLAG=. If you break the promise
  50. % then unpredictable results will occur.
  51. % SYS() = Number of sample times. This is the number of rows in TS.
  52. %
  53. %
  54. % X0 = Initial state conditions or [] if no states.
  55. %
  56. % STR = State ordering strings which is generally specified as [].
  57. %
  58. % TS = An m-by- matrix containing the sample time
  59. % (period, offset) information. Where m = number of sample
  60. % times. The ordering of the sample times must be:
  61. %
  62. % TS = [ , : Continuous sample time.
  63. % , : Continuous, but fixed in minor step
  64. % sample time.
  65. % PERIOD OFFSET, : Discrete sample time where
  66. % PERIOD > & OFFSET < PERIOD.
  67. % - ]; : Variable step discrete sample time
  68. % where FLAG= is used to get time of
  69. % next hit.
  70. %
  71. % There can be more than one sample time providing
  72. % they are ordered such that they are monotonically
  73. % increasing. Only the needed sample times should be
  74. % specified in TS. When specifying more than one
  75. % sample time, you must check for sample hits explicitly by
  76. % seeing if
  77. % abs(round((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD)
  78. % is within a specified tolerance, generally 1e-. This
  79. % tolerance is dependent upon your model's sampling times
  80. % and simulation time.
  81. %
  82. % You can also specify that the sample time of the S-function
  83. % is inherited from the driving block. For functions which
  84. % change during minor steps, this is done by
  85. % specifying SYS() = and TS = [- ]. For functions which
  86. % are held during minor steps, this is done by specifying
  87. % SYS() = and TS = [- ].
  88. %
  89. % SIMSTATECOMPLIANCE = Specifices how to handle this block when saving and
  90. % restoring the complete simulation state of the
  91. % model. The allowed values are: 'DefaultSimState',
  92. % 'HasNoSimState' or 'DisallowSimState'. If this value
  93. % is not speficified, then the block's compliance with
  94. % simState feature is set to 'UknownSimState'.
  95.  
  96. % Copyright - The MathWorks, Inc.
  97.  
  98. %
  99. % The following outlines the general structure of an S-function.
  100. %
  101. switch flag,
  102.  
  103. %%%%%%%%%%%%%%%%%%
  104. % Initialization %
  105. %%%%%%%%%%%%%%%%%%
  106. case ,
  107. [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes;
  108.  
  109. %%%%%%%%%%%%%%%
  110. % Derivatives %
  111. %%%%%%%%%%%%%%%
  112. case ,
  113. sys=mdlDerivatives(t,x,u);
  114.  
  115. %%%%%%%%%%
  116. % Update %
  117. %%%%%%%%%%
  118. case ,
  119. sys=mdlUpdate(t,x,u);
  120.  
  121. %%%%%%%%%%%
  122. % Outputs %
  123. %%%%%%%%%%%
  124. case ,
  125. sys=mdlOutputs(t,x,u);
  126.  
  127. %%%%%%%%%%%%%%%%%%%%%%%
  128. % GetTimeOfNextVarHit %
  129. %%%%%%%%%%%%%%%%%%%%%%%
  130. case ,
  131. sys=mdlGetTimeOfNextVarHit(t,x,u);
  132.  
  133. %%%%%%%%%%%%%
  134. % Terminate %
  135. %%%%%%%%%%%%%
  136. case ,
  137. sys=mdlTerminate(t,x,u);
  138.  
  139. %%%%%%%%%%%%%%%%%%%%
  140. % Unexpected flags %
  141. %%%%%%%%%%%%%%%%%%%%
  142. otherwise
  143. DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
  144.  
  145. end
  146.  
  147. % end sfuntmpl
  148.  
  149. %
  150. %=============================================================================
  151. % mdlInitializeSizes
  152. % Return the sizes, initial conditions, and sample times for the S-function.
  153. %=============================================================================
  154. %
  155. function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes
  156.  
  157. %
  158. % call simsizes for a sizes structure, fill it in and convert it to a
  159. % sizes array.
  160. %
  161. % Note that in this example, the values are hard coded. This is not a
  162. % recommended practice as the characteristics of the block are typically
  163. % defined by the S-function parameters.
  164. %
  165. sizes = simsizes;
  166.  
  167. sizes.NumContStates = ;
  168. sizes.NumDiscStates = ;
  169. sizes.NumOutputs = ;
  170. sizes.NumInputs = ;
  171. sizes.DirFeedthrough = ;
  172. sizes.NumSampleTimes = ; % at least one sample time is needed
  173.  
  174. sys = simsizes(sizes);
  175.  
  176. %
  177. % initialize the initial conditions
  178. %
  179. x0 = [];
  180.  
  181. %
  182. % str is always an empty matrix
  183. %
  184. str = [];
  185.  
  186. %
  187. % initialize the array of sample times
  188. %
  189. ts = [ ];
  190.  
  191. % Specify the block simStateCompliance. The allowed values are:
  192. % 'UnknownSimState', < The default setting; warn and assume DefaultSimState
  193. % 'DefaultSimState', < Same sim state as a built-in block
  194. % 'HasNoSimState', < No sim state
  195. % 'DisallowSimState' < Error out when saving or restoring the model sim state
  196. simStateCompliance = 'UnknownSimState';
  197.  
  198. % end mdlInitializeSizes
  199.  
  200. %
  201. %=============================================================================
  202. % mdlDerivatives
  203. % Return the derivatives for the continuous states.
  204. %=============================================================================
  205. %
  206. function sys=mdlDerivatives(t,x,u)
  207.  
  208. sys = [];
  209.  
  210. % end mdlDerivatives
  211.  
  212. %
  213. %=============================================================================
  214. % mdlUpdate
  215. % Handle discrete state updates, sample time hits, and major time step
  216. % requirements.
  217. %=============================================================================
  218. %
  219. function sys=mdlUpdate(t,x,u)
  220.  
  221. sys = [];
  222.  
  223. % end mdlUpdate
  224.  
  225. %
  226. %=============================================================================
  227. % mdlOutputs
  228. % Return the block outputs.
  229. %=============================================================================
  230. %
  231. function sys=mdlOutputs(t,x,u)
  232.  
  233. sys = [];
  234.  
  235. % end mdlOutputs
  236.  
  237. %
  238. %=============================================================================
  239. % mdlGetTimeOfNextVarHit
  240. % Return the time of the next hit for this block. Note that the result is
  241. % absolute time. Note that this function is only used when you specify a
  242. % variable discrete-time sample time [- ] in the sample time array in
  243. % mdlInitializeSizes.
  244. %=============================================================================
  245. %
  246. function sys=mdlGetTimeOfNextVarHit(t,x,u)
  247.  
  248. sampleTime = ; % Example, set the next hit to be one second later.
  249. sys = t + sampleTime;
  250.  
  251. % end mdlGetTimeOfNextVarHit
  252.  
  253. %
  254. %=============================================================================
  255. % mdlTerminate
  256. % Perform any end of simulation tasks.
  257. %=============================================================================
  258. %
  259. function sys=mdlTerminate(t,x,u)
  260.  
  261. sys = [];
  262.  
  263. % end mdlTerminate

S-函数的几个概念:

1)  直接馈通

在编写S-函数时,初始化函数中需要对sizes.DirFeedthrough 进行设置,如果输出函数mdlOutputs或者对于变采样时间的mdlGetTimeOfNextVarHit是输入u的函数,则模块具有直接馈通的特性sizes.DirFeedthrough=1;否则为0。

2)  采样时间

仿真步长就是整个模型的基础采样时间,各个子系统或模块的采样时间,必须以这个步长为整数倍。

连续信号和离散信号对计算机而言其实都是采样而来的,只是采样时间不同,连续信号采样时间可认为趋于0且基于微分方程,离散信号采样时间比较长基于差分方程。离散信号当前状态由前一个时刻的状态决定,连续信号可以通过微分方程计算得到。如果要将连续信号离散化还要考虑下信号能否恢复的问题,即香农定理。

采样时间点的确定:下一个采样时间=(n*采样间隔)+ 偏移量,n表示当前的仿真步,从0开始。

对于连续采样时间,ts可以设置为[0 0],其中偏移量为0;

对于离散采样时间,ts假设为[0.25 0.1],表示在S-函数仿真开始后0.1s开始每隔0.25s运行一次,当然每个采样时刻都会调用mdlOutPuts和mdlUpdate函数;

对于变采样时间,即离散采样时间的两次采样时间间隔是可变的,每次仿真步开始时都需要用mdlGetTimeNextVarHit计算下一个采样时间的时刻值。ts可以设置为[-2 0]。

对于多个任务,每个任务都可以以不同的采样速率执行S-函数,假设任务A在仿真开始每隔0.25s执行一次,任务B在仿真后0.1s每隔1s执行一次,那么ts设置为[0.25 0.1;1.0 0.1],具体到S-函数的执行时间为[0 0.1 0.25 0.5 0.75 1.0 1.1…]。

如果用户想继承被连接模块的采样时间,ts只要设置为[-1 0]。

子函数的作用

  1. (1).mdlInitializeSizes函数-初始化函数
    function[sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes
  2. sizes = simsizes;
  3. sizes.NumContStates = ; %连续状态个数
  4. sizes.NumDiscStates = ; %离散状态个数
  5. sizes.NumOutputs = ; %输出个数
  6. sizes.NumInputs = ; %输入个数
  7. sizes.DirFeedthrough = ; %是否直接馈通
  8. sizes.NumSampleTimes = ; %采样时间个数,至少一个
  9. sys = simsizes(sizes); %将size结构传到sys
  10. x0 = []; %初始状态向量,由传入的参数决定,没有为空
  11. str = [];
  12. ts = [ ]; %设置采样时间,这里是连续采样,偏移量为0
  13. % Specify the blocksimStateCompliance. The allowed values are:
  14. % 'UnknownSimState', < The defaultsetting; warn and assume DefaultSimState
  15. % 'DefaultSimState', < Same sim state as abuilt-in block
  16. % 'HasNoSimState', < No sim state
  17. % 'DisallowSimState' < Error out whensaving or restoring the model sim state
  18. simStateCompliance = 'UnknownSimState';
  1. (2).mdlGetTimeOfNextVarHit(t,x,u)函数-计算下一个采样时间
    functionsys=mdlGetTimeOfNextVarHit(t,x,u)
  2. sampleTime = ; % Example, set the next hit to be one secondlater.
  3. sys = t + sampleTime;
  1. (3).mdlOutputs函数-计算S函数输出
    functionsys=mdlOutputs(t,x,u)
  2. sys = [];
  1. (4).mdlUpdate函数-更新
  2. function sys=mdlUpdate(t,x,u)
  3. sys = [];
  1. (5).mdlDerivatives函数-微分函数(计算连续状态导数)
    functionsys=mdlDerivatives(t,x,u)
  2. sys = [];
  1. (6).mdlTerminate函数-终止仿真
  2. functionsys=mdlTerminate(t,x,u)
  3. sys = [];
  1. function [sys,x0,str,ts,simStateCompliance] = sfuntmpl_c(t,x,u,flag)
  2.  
  3. %%%%Simulinks函数模板的翻译版
  4. %[sys,x0,str,ts,simStateCompliance] = sfuntmpl(t,x,u,flagp1,…pn)
  5.  
  6. % flag result 描述
  7. % —– —— ——————————————–
  8. % [sizes,x0,str,Ts] 初始化,返回SYS的大小,初始状态x0,str,采样时间Ts
  9. % DX 返回连续状态微分SYS.
  10. % DS 更新离散状态 SYS = X(n+)
  11. % Y 返回输出SYS.
  12. % TNEXT Return next time hit for variable step sample time in SYS.
  13. % Reserved for future (root finding).
  14. % [] 结束 perform any cleanup SYS=[].
  15.  
  16. % flag=0时,以下信息必须赋值回传
  17. % SYS() = 连续状态个数
  18. % SYS() = 离散状态个数
  19. % SYS() = 输出量个数
  20. % SYS() = 输入量个数 注:上述4个变量可以赋值为-,表示其值可变
  21. % SYS() = 保留值。为0.
  22. % SYS() = 直接馈通标志(=yes, =no).如果uflag=3时被使用,说明S函数是直接馈通,赋值为1. 否则为0.
  23. % SYS() = 采样时间个数,Ts的行数
  24. %
  25. % X0 = 初始状态。没有则赋值为[].除flag=0外,被忽略。
  26. % STR = 系统保留,设为[].
  27. % TS = m* 矩阵。(采样周期,偏移量)
  28. % TS = [ , : 连续采样
  29. % , : 1Ts后连续采样
  30. % PERIOD OFFSET, : Discrete sample time where
  31. % PERIOD > & OFFSET < PERIOD.
  32. % - ]; : 变步长离散采样,
  33. % flag=4用于决定下一个采样时刻
  34. % 注:
  35. % 若希望每个时间步都运行,则设Ts=[,]
  36. % 若希望继承采样时间运行,则设Ts=[-,]
  37. % 若希望继承采样时间运行,且希望在微步内不变化,应该设Ts=[-,]
  38. % 若希望仿真开始0.1s后每隔0.25秒运行,则设Ts=[0.25,0.1]
  39. % 若希望按照不同速率执行不同任务,则Ts应按照升序排列。
  40. % 即:每隔0.25秒执行一个任务,同时在开始0.1秒后,每隔1秒执行另一个任务
  41. % Ts=[0.25,; 1.0,0.1],则simulink将在下列时刻执行s函数[,0.1,0.25,0.5,0.75,,1.1,…]
  42.  
  43. % 以下是S函数的主函数
  44. switch flag,
  45. case , % 初始化
  46. [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes;
  47.  
  48. case , % 连续时间导数
  49. sys=mdlDerivatives(t,x,u);
  50.  
  51. case , % 更新离散状态量
  52. sys=mdlUpdate(t,x,u);
  53.  
  54. case , % 计算输出
  55. sys=mdlOutputs(t,x,u);
  56.  
  57. case , % 计算下一步采样时刻
  58. sys=mdlGetTimeOfNextVarHit(t,x,u);
  59.  
  60. case , % 结束仿真
  61. sys=mdlTerminate(t,x,u);
  62.  
  63. otherwise % 未知flag
  64. DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
  65. end % S函数主程序结束
  66.  
  67. %=============================================================================
  68. % mdlInitializeSizes
  69. % 返回s函数的sizes、初始条件、采样时刻
  70. %=============================================================================
  71. function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes
  72. % 调用simsizes函数为sizes结构赋值
  73. % simsizes函数是S函数模块特有的。它的结构和代码是固定的。
  74.  
  75. sizes = simsizes;
  76. sizes.NumContStates = ; %连续状态个数
  77. sizes.NumDiscStates = ; %离散状态个数
  78. sizes.NumOutputs = ; %输出量个数
  79. sizes.NumInputs = ; %输入量个数
  80. sizes.DirFeedthrough = ; %直接馈通标志
  81. sizes.NumSampleTimes = ; % 至少有一个采样时刻
  82. sys = simsizes(sizes);
  83.  
  84. x0 = ; % 状态初始化
  85. str = []; % str 始终为空
  86. ts = [ ];% 初始化采样时间
  87.  
  88. % 指定simStateCompliance的值.
  89. % UnknownSimState’, < 默认值; warn and assume DefaultSimState
  90. % DefaultSimState’, < Same sim state as a built-in block
  91. % HasNoSimState’, < No sim state
  92. % DisallowSimState < Error out when saving or restoring the model sim state
  93. simStateCompliance = 'UnknownSimState';
  94. % 子函数mdlInitializeSizes 结束
  95.  
  96. %=============================================================================
  97. % mdlDerivatives
  98. % 返回连续状态量的导数
  99. %=============================================================================
  100. function sys=mdlDerivatives(t,x,u)
  101.  
  102. sys = [];
  103.  
  104. % 子函数mdlDerivatives结束
  105.  
  106. %=============================================================================
  107. % mdlUpdate
  108. %更新离散时间状态,采样时刻和主时间步的要求。
  109. %=============================================================================
  110. function sys=mdlUpdate(t,x,u)
  111.  
  112. sys = [];
  113. % 子函数 mdlUpdate 结束
  114.  
  115. %=============================================================================
  116. % mdlOutputs
  117. % 计算并返回模块输出量
  118. %=============================================================================
  119. function sys=mdlOutputs(t,x,u)
  120.  
  121. sys = [];
  122.  
  123. % 子函数 mdlOutputs 结束
  124.  
  125. %=============================================================================
  126. % mdlGetTimeOfNextVarHit
  127. % 返回下一个采样时刻。注意返回结果是一个绝对时间,只在Ts=[-,]时使用。
  128. %=============================================================================
  129. function sys=mdlGetTimeOfNextVarHit(t,x,u)
  130.  
  131. sampleTime = ; % 例子。设置下一个采样时刻为1s后。
  132. sys = t + sampleTime;
  133.  
  134. % 子函数 mdlGetTimeOfNextVarHit 结束
  135.  
  136. %=============================================================================
  137. % mdlTerminate
  138. % 仿真结束
  139. %=============================================================================
  140. %
  141. function sys=mdlTerminate(t,x,u)
  142.  
  143. sys = [];
  144.  
  145. % 子函数 mdlTerminate结束
  1. function [sys,x0,str,ts,simStateCompliance]=limintm(t,x,u,flag,lb,ub,xi
    %传入的三个参数放在后面lb,ub,xi的位置
  2. %LIMINTM Limited integrator implementation.
  3. % Example MATLAB file S-function implementing a continuous limited integrator
  4. % where the output is bounded by lower bound (LB) and upper bound (UB)
  5. % with initial conditions (XI).
  6. %
  7. % See sfuntmpl.m for a general S-function template.
  8. %
  9. % See also SFUNTMPL.
  10.  
  11. % Copyright - The MathWorks, Inc.
  12. % $Revision: 1.1.6.2 $
  13.  
  14. switch flag
  15.  
  16. %%%%%%%%%%%%%%%%%%
  17. % Initialization %
  18. %%%%%%%%%%%%%%%%%%
  19. case
  20. [sys,x0,str,ts,simStateCompliance] = mdlInitializeSizes(lb,ub,xi);
  21.  
  22. %%%%%%%%%%%%%%%
  23. % Derivatives %
  24. %%%%%%%%%%%%%%%
  25. case
  26. sys = mdlDerivatives(t,x,u,lb,ub);
  27.  
  28. %%%%%%%%%%%%%%%%%%%%%%%%
  29. % Update and Terminate %
  30.  
  31. %%%%%%%%%%%%%%%%%%%%%%%%
  32. case {,}
  33. sys = []; % do nothing
  34.  
  35. %%%%%%%%%%
  36. % Output %
  37. %%%%%%%%%%
  38. case
  39. sys = mdlOutputs(t,x,u);
  40.  
  41. otherwise
  42. DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
  43. end
  44.  
  45. % end limintm
  46.  
  47. %
  48. %=============================================================================
  49. % mdlInitializeSizes
  50. % Return the sizes, initial conditions, and sample times for the S-function.
  51. %=============================================================================
  52. %
  53. function [sys,x0,str,ts,simStateCompliance] = mdlInitializeSizes(lb,ub,xi)
  54.  
  55. sizes = simsizes;
  56. sizes.NumContStates = ;%1个连续状态,即积分状态
  57. sizes.NumDiscStates = ;
  58. sizes.NumOutputs = ;
  59. sizes.NumInputs = ;
  60. sizes.DirFeedthrough = ;
  61. sizes.NumSampleTimes = ;
  62.  
  63. sys = simsizes(sizes);
  64. str = [];
  65. x0 = xi; %积分状态初始条件‘
  66. ts = [ ]; % sample time: [period, offset]
  67.  
  68. % speicfy that the simState for this s-function is same as the default
  69. simStateCompliance = 'DefaultSimState';
  70.  
  71. % end mdlInitializeSizes
  72.  
  73. %
  74. %=============================================================================
  75. % mdlDerivatives
  76. % Compute derivatives for continuous states.
  77. %=============================================================================
  78. %
  79. function sys = mdlDerivatives(t,x,u,lb,ub)
  80.  
  81. if (x <= lb & u < ) | (x>= ub & u> )
  82. sys = ;
  83. else
  84. sys = u;
  85. end
  86.  
  87. % end mdlDerivatives
  88.  
  89. %
  90. %=============================================================================
  91. % mdlOutputs
  92. % Return the output vector for the S-function
  93. %=============================================================================
  94. %
  95. function sys = mdlOutputs(t,x,u)
  96.  
  97. sys = x;
  98.  
  99. % end mdlOutputs

Matlab 中S-函数的使用 sfuntmpl的更多相关文章

  1. matlab中patch函数的用法

    http://blog.sina.com.cn/s/blog_707b64550100z1nz.html matlab中patch函数的用法——emily (2011-11-18 17:20:33) ...

  2. matlab中subplot函数的功能

    转载自http://wenku.baidu.com/link?url=UkbSbQd3cxpT7sFrDw7_BO8zJDCUvPKrmsrbITk-7n7fP8g0Vhvq3QTC0DrwwrXfa ...

  3. 【原创】Matlab中plot函数全功能解析

    [原创]Matlab中plot函数全功能解析 该帖由Matlab技术论(http://www.matlabsky.com)坛原创,更多精彩内容参见http://www.matlabsky.com 功能 ...

  4. matlab 中max函数用法

    Matlab中max函数在矩阵中求函数大小的实例如下:(1)C = max(A)返回一个数组各不同维中的最大元素.如果A是一个向量,max(A)返回A中的最大元素.如果A是一个矩阵,max(A)将A的 ...

  5. Matlab中plot函数全功能解析

    Matlab中plot函数全功能解析 功能 二维曲线绘图 语法 plot(Y)plot(X1,Y1,...)plot(X1,Y1,LineSpec,...)plot(...,'PropertyName ...

  6. matlab中cumsum函数

    matlab中cumsum函数通常用于计算一个数组各行的累加值.在matlab的命令窗口中输入doc cumsum或者help cumsum即可获得该函数的帮助信息. 格式一:B = cumsum(A ...

  7. 『转载』Matlab中fmincon函数获取乘子

    Matlab中fmincon函数获取乘子 一.输出结构 [x,fval,exitflag,output,lambda] = fmincon(......) 二.结构说明 lambda结构 说     ...

  8. matlab中norm函数的用法

    格式:n=norm(A,p) 功能:norm函数可计算几种不同类型的矩阵范数,根据p的不同可得到不同的范数 以下是Matlab中help norm 的解释 NORM   Matrix or vecto ...

  9. matlab中fprintf函数的具体使用方法

    matlab中fprintf函数的具体使用方法实例如下: fprintf函数可以将数据按指定格式写入到文本文件中.其调用格式为: 数据的格式化输出:fprintf(fid, format, varia ...

  10. matlab中repmat函数的用法(堆叠矩阵)

    matlab中repmat函数的用法 B = repmat(A,m,n) B = repmat(A,[m n]) B = repmat(A,[m n p...]) 这是一个处理大矩阵且内容有重复时使用 ...

随机推荐

  1. Office组件无法正常使用的解决方法

    问题与现象     开发时调用Office组件,代码编译是通过的,但在运行时当ApplicationClass对象初始化后程序出现异常.     异常信息如下:     无法将类型为“Microsof ...

  2. Django之路由分发和反向解析

    一.路由分发: 路由分发是指:总路由不再直接做路由与视图函数的对应关系,而是将获取的路由分发给下面的app去处理对应关系 from django.conf.urls import url,includ ...

  3. jsp内置对象-pageContext对象

    1.概念:pageContext对象能够获取JSP页面中的request.response.session.application等其他内置对象.pageContext对象的创建和初始化由容器完成,可 ...

  4. react+redux+Instagram

    项目地址:https://github.com/xiaoyuqing/react-redux-instagram,喜欢的话动动手指点点赞^-^ 1.初始化项目 IndexRoute是默认路由 2.增加 ...

  5. 兹瓷查rank和kth的STL平衡树

    兹瓷查rank和kth的STL平衡树 明天就是一轮省选了啊..这可能是退役前的最后一篇博文了吧(如果心情不好怕是连游记都会咕) 众周所知stl中有一个依靠红黑树实现的nb数据结构-std::set 但 ...

  6. 3Delight NSI: A Streamable Render API

    3Delight是应用于高端电影级别渲染的软件渲染器,迄今为止已经参与了无数的电影制作,具体可以参见链接. 如果你对3Delight的印象就依然是RenderMan的替代品,那就显然已经和时代发展脱节 ...

  7. SSM框架多数据源和AOP事务管理之间

  8. Python之Pandas的一些理解

    Pandas的功能: 1.  结构化的数据分析; 相比excel,可以处理更大量的数据和更好的性能 2.  对数据的清洗

  9. Java设置接口跨域

    现在我们很多项目都是基于Java的REST结构风格前后端分离,在前端访问后端的时候就存在跨域,这个时候后端接口不处理就会存在访问不了.上代码! 1.创建一个Filter 在web.xml中配置 < ...

  10. arts打卡第二周

    Algorithm 旋转数组 Given an array, rotate the array to the right by k steps, where k is non-negative. Ex ...