之前,俺也发过不少快速高斯模糊算法.

俺一般认为,只要处理一千六百万像素彩色图片,在2.2GHz的CPU上单核单线程超过1秒的算法,都是不快的.

之前发的几个算法,在俺2.2GHz的CPU上耗时都会超过1秒.

而众所周知,快速高斯模糊有很多实现方法:

1.FIR (Finite impulse response)

https://zh.wikipedia.org/wiki/%E9%AB%98%E6%96%AF%E6%A8%A1%E7%B3%8A

2.SII (Stacked integral images)

http://dx.doi.org/10.1109/ROBOT.2010.5509400

http://arxiv.org/abs/1107.4958

3.Vliet-Young-Verbeek (Recursive filter)

http://dx.doi.org/10.1016/0165-1684(95)00020-E

http://dx.doi.org/10.1109/ICPR.1998.711192

4.DCT (Discrete Cosine Transform)

http://dx.doi.org/10.1109/78.295213

5.box (Box filter)

http://dx.doi.org/10.1109/TPAMI.1986.4767776

6.AM(Alvarez, Mazorra)

http://www.jstor.org/stable/2158018

7.Deriche (Recursive filter)

http://hal.inria.fr/docs/00/07/47/78/PDF/RR-1893.pdf

8.ebox (Extended Box)

http://dx.doi.org/10.1007/978-3-642-24785-9_38

9.IIR (Infinite Impulse Response)

https://software.intel.com/zh-cn/articles/iir-gaussian-blur-filter-implementation-using-intel-advanced-vector-extensions

10.FA (Fast Anisotropic)

http://mathinfo.univ-reims.fr/IMG/pdf/Fast_Anisotropic_Gquss_Filtering_-_GeusebroekECCV02.pdf

......

实现高斯模糊的方法虽然很多,但是作为算法而言,核心关键是简单高效.

目前俺经过实测,IIR是兼顾效果以及性能的不错的方法,也是半径无关(即模糊不同强度耗时基本不变)的实现.

英特尔官方实现的这份:

IIR Gaussian Blur Filter Implementation using Intel® Advanced Vector Extensions [PDF 513KB]
source: gaussian_blur.cpp [36KB]

采用了英特尔处理器的流(SIMD)指令,算法处理速度极其惊人.

俺写算法追求干净整洁,高效简单,换言之就是不采用任何硬件加速方案,实现简单高效,以适应不同硬件环境.

故基于英特尔这份代码,俺对其进行了改写以及优化.

最终在俺2.20GHz的CPU上,单核单线程,不采用流(SIMD)指令,达到了,处理一千六百万像素的彩色照片仅需700毫秒左右.

按照惯例,还是贴个效果图比较直观.

之前也有网友问过这个算法的实现问题.

想了想,还是将代码共享出来,供大家参考学习.

完整代码:

void CalGaussianCoeff(float sigma, float * a0, float * a1, float * a2, float * a3, float * b1, float * b2, float * cprev, float * cnext) {
float alpha, lamma, k; if (sigma < 0.5f)
sigma = 0.5f;
alpha = (float)exp((0.726) * (0.726)) / sigma;
lamma = (float)exp(-alpha);
*b2 = (float)exp(- * alpha);
k = ( - lamma) * ( - lamma) / ( + * alpha * lamma - (*b2));
*a0 = k; *a1 = k * (alpha - ) * lamma;
*a2 = k * (alpha + ) * lamma;
*a3 = -k * (*b2);
*b1 = - * lamma;
*cprev = (*a0 + *a1) / ( + *b1 + *b2);
*cnext = (*a2 + *a3) / ( + *b1 + *b2);
} void gaussianHorizontal(unsigned char * bufferPerLine, unsigned char * lpRowInitial, unsigned char * lpColumn, int width, int height, int Channels, int Nwidth, float a0a1, float a2a3, float b1b2, float cprev, float cnext)
{
int HeightStep = Channels*height;
int WidthSubOne = width - ;
if (Channels == )
{
float prevOut[];
prevOut[] = (lpRowInitial[] * cprev);
prevOut[] = (lpRowInitial[] * cprev);
prevOut[] = (lpRowInitial[] * cprev);
for (int x = ; x < width; ++x) {
prevOut[] = ((lpRowInitial[] * (a0a1)) - (prevOut[] * (b1b2)));
prevOut[] = ((lpRowInitial[] * (a0a1)) - (prevOut[] * (b1b2)));
prevOut[] = ((lpRowInitial[] * (a0a1)) - (prevOut[] * (b1b2)));
bufferPerLine[] = prevOut[];
bufferPerLine[] = prevOut[];
bufferPerLine[] = prevOut[];
bufferPerLine += Channels;
lpRowInitial += Channels;
}
lpRowInitial -= Channels;
lpColumn += HeightStep * WidthSubOne;
bufferPerLine -= Channels;
prevOut[] = (lpRowInitial[] * cnext);
prevOut[] = (lpRowInitial[] * cnext);
prevOut[] = (lpRowInitial[] * cnext); for (int x = WidthSubOne; x >= ; --x) {
prevOut[] = ((lpRowInitial[] * (a2a3)) - (prevOut[] * (b1b2)));
prevOut[] = ((lpRowInitial[] * (a2a3)) - (prevOut[] * (b1b2)));
prevOut[] = ((lpRowInitial[] * (a2a3)) - (prevOut[] * (b1b2)));
bufferPerLine[] += prevOut[];
bufferPerLine[] += prevOut[];
bufferPerLine[] += prevOut[];
lpColumn[] = bufferPerLine[];
lpColumn[] = bufferPerLine[];
lpColumn[] = bufferPerLine[];
lpRowInitial -= Channels;
lpColumn -= HeightStep;
bufferPerLine -= Channels;
}
}
else if (Channels == )
{
float prevOut[]; prevOut[] = (lpRowInitial[] * cprev);
prevOut[] = (lpRowInitial[] * cprev);
prevOut[] = (lpRowInitial[] * cprev);
prevOut[] = (lpRowInitial[] * cprev);
for (int x = ; x < width; ++x) {
prevOut[] = ((lpRowInitial[] * (a0a1)) - (prevOut[] * (b1b2)));
prevOut[] = ((lpRowInitial[] * (a0a1)) - (prevOut[] * (b1b2)));
prevOut[] = ((lpRowInitial[] * (a0a1)) - (prevOut[] * (b1b2)));
prevOut[] = ((lpRowInitial[] * (a0a1)) - (prevOut[] * (b1b2))); bufferPerLine[] = prevOut[];
bufferPerLine[] = prevOut[];
bufferPerLine[] = prevOut[];
bufferPerLine[] = prevOut[];
bufferPerLine += Channels;
lpRowInitial += Channels;
}
lpRowInitial -= Channels;
lpColumn += HeightStep * WidthSubOne;
bufferPerLine -= Channels; prevOut[] = (lpRowInitial[] * cnext);
prevOut[] = (lpRowInitial[] * cnext);
prevOut[] = (lpRowInitial[] * cnext);
prevOut[] = (lpRowInitial[] * cnext); for (int x = WidthSubOne; x >= ; --x) {
prevOut[] = ((lpRowInitial[] * a2a3) - (prevOut[] * b1b2));
prevOut[] = ((lpRowInitial[] * a2a3) - (prevOut[] * b1b2));
prevOut[] = ((lpRowInitial[] * a2a3) - (prevOut[] * b1b2));
prevOut[] = ((lpRowInitial[] * a2a3) - (prevOut[] * b1b2));
bufferPerLine[] += prevOut[];
bufferPerLine[] += prevOut[];
bufferPerLine[] += prevOut[];
bufferPerLine[] += prevOut[];
lpColumn[] = bufferPerLine[];
lpColumn[] = bufferPerLine[];
lpColumn[] = bufferPerLine[];
lpColumn[] = bufferPerLine[];
lpRowInitial -= Channels;
lpColumn -= HeightStep;
bufferPerLine -= Channels;
}
}
else if (Channels == )
{
float prevOut = (lpRowInitial[] * cprev); for (int x = ; x < width; ++x) {
prevOut = ((lpRowInitial[] * (a0a1)) - (prevOut * (b1b2)));
bufferPerLine[] = prevOut;
bufferPerLine += Channels;
lpRowInitial += Channels;
}
lpRowInitial -= Channels;
lpColumn += HeightStep*WidthSubOne;
bufferPerLine -= Channels; prevOut = (lpRowInitial[] * cnext); for (int x = WidthSubOne; x >= ; --x) {
prevOut = ((lpRowInitial[] * a2a3) - (prevOut * b1b2));
bufferPerLine[] += prevOut;
lpColumn[] = bufferPerLine[];
lpRowInitial -= Channels;
lpColumn -= HeightStep;
bufferPerLine -= Channels;
}
}
} void gaussianVertical(unsigned char * bufferPerLine, unsigned char * lpRowInitial, unsigned char * lpColInitial, int height, int width, int Channels, float a0a1, float a2a3, float b1b2, float cprev, float cnext) { int WidthStep = Channels*width;
int HeightSubOne = height - ;
if (Channels == )
{
float prevOut[];
prevOut[] = (lpRowInitial[] * cprev);
prevOut[] = (lpRowInitial[] * cprev);
prevOut[] = (lpRowInitial[] * cprev); for (int y = ; y < height; y++) {
prevOut[] = ((lpRowInitial[] * a0a1) - (prevOut[] * b1b2));
prevOut[] = ((lpRowInitial[] * a0a1) - (prevOut[] * b1b2));
prevOut[] = ((lpRowInitial[] * a0a1) - (prevOut[] * b1b2));
bufferPerLine[] = prevOut[];
bufferPerLine[] = prevOut[];
bufferPerLine[] = prevOut[];
bufferPerLine += Channels;
lpRowInitial += Channels;
}
lpRowInitial -= Channels;
bufferPerLine -= Channels;
lpColInitial += WidthStep * HeightSubOne;
prevOut[] = (lpRowInitial[] * cnext);
prevOut[] = (lpRowInitial[] * cnext);
prevOut[] = (lpRowInitial[] * cnext);
for (int y = HeightSubOne; y >= ; y--) {
prevOut[] = ((lpRowInitial[] * a2a3) - (prevOut[] * b1b2));
prevOut[] = ((lpRowInitial[] * a2a3) - (prevOut[] * b1b2));
prevOut[] = ((lpRowInitial[] * a2a3) - (prevOut[] * b1b2));
bufferPerLine[] += prevOut[];
bufferPerLine[] += prevOut[];
bufferPerLine[] += prevOut[];
lpColInitial[] = bufferPerLine[];
lpColInitial[] = bufferPerLine[];
lpColInitial[] = bufferPerLine[];
lpRowInitial -= Channels;
lpColInitial -= WidthStep;
bufferPerLine -= Channels;
}
}
else if (Channels == )
{
float prevOut[]; prevOut[] = (lpRowInitial[] * cprev);
prevOut[] = (lpRowInitial[] * cprev);
prevOut[] = (lpRowInitial[] * cprev);
prevOut[] = (lpRowInitial[] * cprev); for (int y = ; y < height; y++) {
prevOut[] = ((lpRowInitial[] * a0a1) - (prevOut[] * b1b2));
prevOut[] = ((lpRowInitial[] * a0a1) - (prevOut[] * b1b2));
prevOut[] = ((lpRowInitial[] * a0a1) - (prevOut[] * b1b2));
prevOut[] = ((lpRowInitial[] * a0a1) - (prevOut[] * b1b2));
bufferPerLine[] = prevOut[];
bufferPerLine[] = prevOut[];
bufferPerLine[] = prevOut[];
bufferPerLine[] = prevOut[];
bufferPerLine += Channels;
lpRowInitial += Channels;
}
lpRowInitial -= Channels;
bufferPerLine -= Channels;
lpColInitial += WidthStep*HeightSubOne;
prevOut[] = (lpRowInitial[] * cnext);
prevOut[] = (lpRowInitial[] * cnext);
prevOut[] = (lpRowInitial[] * cnext);
prevOut[] = (lpRowInitial[] * cnext);
for (int y = HeightSubOne; y >= ; y--) {
prevOut[] = ((lpRowInitial[] * a2a3) - (prevOut[] * b1b2));
prevOut[] = ((lpRowInitial[] * a2a3) - (prevOut[] * b1b2));
prevOut[] = ((lpRowInitial[] * a2a3) - (prevOut[] * b1b2));
prevOut[] = ((lpRowInitial[] * a2a3) - (prevOut[] * b1b2));
bufferPerLine[] += prevOut[];
bufferPerLine[] += prevOut[];
bufferPerLine[] += prevOut[];
bufferPerLine[] += prevOut[];
lpColInitial[] = bufferPerLine[];
lpColInitial[] = bufferPerLine[];
lpColInitial[] = bufferPerLine[];
lpColInitial[] = bufferPerLine[];
lpRowInitial -= Channels;
lpColInitial -= WidthStep;
bufferPerLine -= Channels;
}
}
else if (Channels == )
{
float prevOut = ;
prevOut = (lpRowInitial[] * cprev);
for (int y = ; y < height; y++) {
prevOut = ((lpRowInitial[] * a0a1) - (prevOut * b1b2));
bufferPerLine[] = prevOut;
bufferPerLine += Channels;
lpRowInitial += Channels;
}
lpRowInitial -= Channels;
bufferPerLine -= Channels;
lpColInitial += WidthStep*HeightSubOne;
prevOut = (lpRowInitial[] * cnext);
for (int y = HeightSubOne; y >= ; y--) {
prevOut = ((lpRowInitial[] * a2a3) - (prevOut * b1b2));
bufferPerLine[] += prevOut;
lpColInitial[] = bufferPerLine[];
lpRowInitial -= Channels;
lpColInitial -= WidthStep;
bufferPerLine -= Channels;
}
}
}
//本人博客:http://tntmonks.cnblogs.com/ 转载请注明出处.
void GaussianBlurFilter(unsigned char * input, unsigned char * output, int Width, int Height, int Stride, float GaussianSigma) { int Channels = Stride / Width;
float a0, a1, a2, a3, b1, b2, cprev, cnext; CalGaussianCoeff(GaussianSigma, &a0, &a1, &a2, &a3, &b1, &b2, &cprev, &cnext); float a0a1 = (a0 + a1);
float a2a3 = (a2 + a3);
float b1b2 = (b1 + b2); int bufferSizePerThread = (Width > Height ? Width : Height) * Channels;
unsigned char * bufferPerLine = (unsigned char*)malloc(bufferSizePerThread);
unsigned char * tempData = (unsigned char*)malloc(Height * Stride);
if (bufferPerLine == NULL || tempData == NULL)
{
if (tempData)
{
free(tempData);
}
if (bufferPerLine)
{
free(bufferPerLine);
}
return;
}
for (int y = ; y < Height; ++y) {
unsigned char * lpRowInitial = input + Stride * y;
unsigned char * lpColInitial = tempData + y * Channels;
gaussianHorizontal(bufferPerLine, lpRowInitial, lpColInitial, Width, Height, Channels, Width, a0a1, a2a3, b1b2, cprev, cnext);
}
int HeightStep = Height*Channels;
for (int x = ; x < Width; ++x) {
unsigned char * lpColInitial = output + x*Channels;
unsigned char * lpRowInitial = tempData + HeightStep * x;
gaussianVertical(bufferPerLine, lpRowInitial, lpColInitial, Height, Width, Channels, a0a1, a2a3, b1b2, cprev, cnext);
} free(bufferPerLine);
free(tempData);
}

调用方法:

  GaussianBlurFilter(输入图像数据,输出图像数据,宽度,高度,通道数,强度)

  注:支持通道数分别为 1 ,3 ,4.

关于IIR相关知识,参阅 百度词条 "IIR数字滤波器"

http://baike.baidu.com/view/3088994.htm

天下武功,唯快不破。
本文只是抛砖引玉一下,若有其他相关问题或者需求也可以邮件联系俺探讨。

邮箱地址是:
gaozhihan@vip.qq.com

题外话:

很多网友一直推崇使用opencv,opencv的确十分强大,但是若是想要有更大的发展空间以及创造力.

还是要一步一个脚印去实现一些最基本的算法,扎实的基础才是构建上层建筑的基本条件.

俺目前只是把opencv当资料库来看,并不认为opencv可以用于绝大多数的商业项目.

若本文帮到您,厚颜无耻求微信扫码打个赏.

半径无关快速高斯模糊实现(附完整C代码)的更多相关文章

  1. 半径无关单核单线程最快速高斯模糊实现(附完整C代码)

    之前,俺也发过不少快速高斯模糊算法. 俺一般认为,只要处理一千六百万像素彩色图片,在2.2GHz的CPU上单核单线程超过1秒的算法,都是不快的. 之前发的几个算法,在俺2.2GHz的CPU上耗时都会超 ...

  2. 快速双边滤波 附完整C代码

    很早之前写过<双边滤波算法的简易实现bilateralFilter>. 当时学习参考的代码来自cuda的样例. 相关代码可以参阅: https://github.com/johng12/c ...

  3. 基于傅里叶变换的音频重采样算法 (附完整c代码)

    前面有提到音频采样算法: WebRTC 音频采样算法 附完整C++示例代码 简洁明了的插值音频重采样算法例子 (附完整C代码) 近段时间有不少朋友给我写过邮件,说了一些他们使用的情况和问题. 坦白讲, ...

  4. 基于RNN的音频降噪算法 (附完整C代码)

    前几天无意间看到一个项目rnnoise. 项目地址: https://github.com/xiph/rnnoise 基于RNN的音频降噪算法. 采用的是 GRU/LSTM 模型. 阅读下训练代码,可 ...

  5. 音频降噪算法 附完整C代码

    降噪是音频图像算法中的必不可少的. 目的肯定是让图片或语音 更加自然平滑,简而言之,美化. 图像算法和音频算法 都有其共通点. 图像是偏向 空间 处理,例如图片中的某个区域. 图像很多时候是以二维数据 ...

  6. mser 最大稳定极值区域(文字区域定位)算法 附完整C代码

    mser 的全称:Maximally Stable Extremal Regions 第一次听说这个算法时,是来自当时部门的一个同事, 提及到他的项目用它来做文字区域的定位,对这个算法做了一些优化. ...

  7. 音频自动增益 与 静音检测 算法 附完整C代码

    前面分享过一个算法<音频增益响度分析 ReplayGain 附完整C代码示例> 主要用于评估一定长度音频的音量强度, 而分析之后,很多类似的需求,肯定是做音频增益,提高音量诸如此类做法. ...

  8. 音频自动增益 与 静音检测 算法 附完整C代码【转】

    转自:https://www.cnblogs.com/cpuimage/p/8908551.html 前面分享过一个算法<音频增益响度分析 ReplayGain 附完整C代码示例> 主要用 ...

  9. 经典傅里叶算法小集合 附完整c代码

    前面写过关于傅里叶算法的应用例子. <基于傅里叶变换的音频重采样算法 (附完整c代码)> 当然也就是举个例子,主要是学习傅里叶变换. 这个重采样思路还有点瑕疵, 稍微改一下,就可以支持多通 ...

随机推荐

  1. SuperMap iClient 查询成功后如何传递参数?

    一.iClient API文档中的接口描述 二.范例 //定义一个this对象 this.param = new SuperMap.LonLat(point.x, point.y); querySer ...

  2. Alpha冲刺Day9

    Alpha冲刺Day9 一:站立式会议 今日安排: 经过为期5天的冲刺,基本完成企业人员模块的开发.因第三方机构与企业存在委托的关系.第三方人员对于风险的自查.风险列表的展示以及自查风险的统计展示(包 ...

  3. hibernate.QueryException: ClassNotFoundException: org.hibernate.hql.ast.HqlToken

    环境:weblogic10.3.5,hibernate3,GGTS(groovy/grails tools suite):出现这问题是因为该项目是从weblogic8.1.6下移植到weblogic1 ...

  4. day-7 一个简单的决策树归纳算法(ID3)python编程实现

    本文介绍如何利用决策树/判定树(decision tree)中决策树归纳算法(ID3)解决机器学习中的回归问题.文中介绍基于有监督的学习方式,如何利用年龄.收入.身份.收入.信用等级等特征值来判定用户 ...

  5. JAVA_SE基础——11.Java中的运算符

    在程序设计中,运算符应用得十分广泛,通过运算符可以将两个变量进行任意运算.数学中的"+"."-"."*"."/"运算符同 ...

  6. NFS PersistentVolume - 每天5分钟玩转 Docker 容器技术(151)

    上一节我们介绍了 PV 和 PVC,本节通过 NFS 实践. 作为准备工作,我们已经在 k8s-master 节点上搭建了一个 NFS 服务器,目录为 /nfsdata: 下面创建一个 PV mypv ...

  7. H5新特性之webWorker

    众所周知javascript是单线程语言,这就是js开发难度较低的原因了,因为不需要解决多线程的资源共享问题(例如死锁),但是单线程性能并不好,因此多了一个webWorker实现js的多进程来提升js ...

  8. LeetCode & Q119-Pascal's Triangle II-Easy

    Description: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3 ...

  9. emqtt 试用(八)ssl认证 - 代码验证

    参考链接:http://emqtt.com/clients#java http://docs.emqtt.cn/zh_CN/latest/config.html#mqtt-ssl-8883 一.单向认 ...

  10. 刨析Maven(对pom.xml配置文件常用标签的解析)

    昨天在阿里云看到了一句话,"当你Learning和Trying之后,如果能尽量把Teaching也做好,会促进我们思考".共勉! 这是关于Maven的第三篇博客,这次我们深入了解p ...