pandas用法大全
pandas用法大全
一、生成数据表
1、首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:
import numpy as np
import pandas as pd12
2、导入CSV或者xlsx文件:
df = pd.DataFrame(pd.read_csv('name.csv',header=1))
df = pd.DataFrame(pd.read_excel('name.xlsx'))
3、用pandas创建数据表:
df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006],
"date":pd.date_range('20130102', periods=6),
"city":['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', 'BEIJING '],
"age":[23,44,54,32,34,32],
"category":['100-A','100-B','110-A','110-C','210-A','130-F'],
"price":[1200,np.nan,2133,5433,np.nan,4432]},
columns =['id','date','city','category','age','price'])
二、数据表信息查看
1、维度查看:
df.shape
2、数据表基本信息(维度、列名称、数据格式、所占空间等):
df.info()
3、每一列数据的格式:
df.dtypes
4、某一列格式:
df['B'].dtype
5、空值:
df.isnull()
6、查看某一列空值:
df.isnull()
7、查看某一列的唯一值:
df['B'].unique()
8、查看数据表的值:
df.values
9、查看列名称:
df.columns
10、查看前10行数据、后10行数据:
df.head() # 默认前10行数据
df.tail() # 默认后10 行数据
三、数据表清洗
1、用数字0填充空值:
df.fillna(value=0)
2、使用列prince的均值对NA进行填充:
df['prince'].fillna(df['prince'].mean())
3、清楚city字段的字符空格:
df['city']=df['city'].map(str.strip)
4、大小写转换:
df['city']=df['city'].str.lower()
5、更改数据格式:
df['price'].astype('int')
6、更改列名称:
df.rename(columns={'category': 'category-size'})
7、删除后出现的重复值:
df['city'].drop_duplicates()
8、删除先出现的重复值:
df['city'].drop_duplicates(keep='last')
9、数据替换:
df['city'].replace('sh', 'shanghai')
四、数据预处理
df1=pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006,1007,1008],
"gender":['male','female','male','female','male','female','male','female'],
"pay":['Y','N','Y','Y','N','Y','N','Y',],
"m-point":[10,12,20,40,40,40,30,20]})
1、数据表合并
df_inner=pd.merge(df,df1,how='inner') # 匹配合并,交集
df_left=pd.merge(df,df1,how='left')
df_right=pd.merge(df,df1,how='right')
df_outer=pd.merge(df,df1,how='outer') #并集
2、设置索引列
df_inner.set_index('id')
3、按照特定列的值排序:
df_inner.sort_values(by=['age'])
4、按照索引列排序:
df_inner.sort_index()
5、如果prince列的值>3000,group列显示high,否则显示low:
df_inner['group'] = np.where(df_inner['price'] > 3000,'high','low')
6、对复合多个条件的数据进行分组标记
df_inner.loc[(df_inner['city'] == 'beijing') & (df_inner['price'] >= 4000), 'sign']=1
7、对category字段的值依次进行分列,并创建数据表,索引值为df_inner的索引列,列名称为category和size
pd.DataFrame((x.split('-') for x in df_inner['category']),index=df_inner.index,columns=['category','size']))
8、将完成分裂后的数据表和原df_inner数据表进行匹配
df_inner=pd.merge(df_inner,split,right_index=True, left_index=True)
五、数据提取
主要用到的三个函数:loc,iloc和ix,loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。
1、按索引提取单行的数值
df_inner.loc[3]
2、按索引提取区域行数值
df_inner.iloc[0:5]
3、重设索引
df_inner.reset_index()
4、设置日期为索引
df_inner=df_inner.set_index('date')
5、提取4日之前的所有数据
df_inner[:'2013-01-04']
6、使用iloc按位置区域提取数据
df_inner.iloc[:3,:2] #冒号前后的数字不再是索引的标签名称,而是数据所在的位置,从0开始,前三行,前两列。
7、适应iloc按位置单独提起数据
df_inner.iloc[[0,2,5],[4,5]] #提取第0、2、5行,4、5列
8、使用ix按索引标签和位置混合提取数据
df_inner.ix[:'2013-01-03',:4] #2013-01-03号之前,前四列数据
9、判断city列的值是否为北京
df_inner['city'].isin(['beijing'])
10、判断city列里是否包含beijing和shanghai,然后将符合条件的数据提取出来
df_inner.loc[df_inner['city'].isin(['beijing','shanghai'])]
11、提取前三个字符,并生成数据表
pd.DataFrame(category.str[:3])
六、数据筛选
使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和。
1、使用“与”进行筛选
df_inner.loc[(df_inner['age'] > 25) & (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']]
2、使用“或”进行筛选
df_inner.loc[(df_inner['age'] > 25) | (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']].sort(['age'])
3、使用“非”条件进行筛选
df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id'])
4、对筛选后的数据按city列进行计数
df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']).city.count()
5、使用query函数进行筛选
df_inner.query('city == ["beijing", "shanghai"]')
6、对筛选后的结果按prince进行求和
df_inner.query('city == ["beijing", "shanghai"]').price.sum()
七、数据汇总
主要函数是groupby和pivote_table
1、对所有的列进行计数汇总
df_inner.groupby('city').count()
2、按城市对id字段进行计数
df_inner.groupby('city')['id'].count()
3、对两个字段进行汇总计数
df_inner.groupby(['city','size'])['id'].count()
4、对city字段进行汇总,并分别计算prince的合计和均值
df_inner.groupby('city')['price'].agg([len,np.sum, np.mean])
八、数据统计
数据采样,计算标准差,协方差和相关系数
1、简单的数据采样
df_inner.sample(n=3)
2、手动设置采样权重
weights = [0, 0, 0, 0, 0.5, 0.5]
df_inner.sample(n=2, weights=weights)
3、采样后不放回
df_inner.sample(n=6, replace=False)
4、采样后放回
df_inner.sample(n=6, replace=True)
5、 数据表描述性统计
df_inner.describe().round(2).T #round函数设置显示小数位,T表示转置
6、计算列的标准差
df_inner['price'].std()
7、计算两个字段间的协方差
df_inner['price'].cov(df_inner['m-point'])
8、数据表中所有字段间的协方差
df_inner.cov()
9、两个字段的相关性分析
df_inner['price'].corr(df_inner['m-point']) #相关系数在-1到1之间,接近1为正相关,接近-1为负相关,0为不相关
10、数据表的相关性分析
df_inner.corr()
九、数据输出
分析后的数据可以输出为xlsx格式和csv格式
1、写入Excel
df_inner.to_excel('excel_to_python.xlsx', sheet_name='bluewhale_cc')
2、写入到CSV
df_inner.to_csv('excel_to_python.csv')
关注公众号:
pandas用法大全的更多相关文章
- python之pandas用法大全
python之pandas用法大全 更新时间:2018年03月13日 15:02:28 投稿:wdc 我要评论 本文讲解了python的pandas基本用法,大家可以参考下 一.生成数据表1.首先导入 ...
- Python3 pandas用法大全
Python3 pandas用法大全 一.生成数据表 1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as np import pandas as ...
- python数据处理 pandas用法大全
一.生成数据表 1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as np import pandas as pd 1 2 2.导入CSV ...
- pandas用法小结
前言 个人感觉网上对pandas的总结感觉不够详尽细致,在这里我对pandas做个相对细致的小结吧,在数据分析与人工智能方面会有所涉及到的东西在这里都说说吧,也是对自己学习的一种小结! pandas用 ...
- MVC5 + EF6 + Bootstrap3 (9) HtmlHelper用法大全(下)
文章来源:Slark.NET-博客园 http://www.cnblogs.com/slark/p/mvc5-ef6-bs3-get-started-httphelper-part2.html 上一节 ...
- MVC5 + EF6 + Bootstrap3 (8) HtmlHelper用法大全(上)
文章来源:Slark.NET-博客园 http://www.cnblogs.com/slark/p/mvc5-ef6-bs3-get-started-httphelper-part1.html 上一节 ...
- MVC HtmlHelper用法大全
MVC HtmlHelper用法大全HtmlHelper用来在视图中呈现 HTML 控件.以下列表显示了当前可用的一些 HTML 帮助器. 本主题演示所列出的带有星号 (*) 的帮助器. ·Actio ...
- C# MessageBox 用法大全(转)
C# MessageBox 用法大全 http://www.cnblogs.com/Tammie/archive/2011/08/05/2128623.html 我们在程序中经常会用到MessageB ...
- MVC中HtmlHelper用法大全参考
MVC中HtmlHelper用法大全参考 解析MVC中HtmlHelper控件7个大类中各个控件的主要使用方法(1) 2012-02-27 16:25 HtmlHelper类在命令System.Web ...
随机推荐
- Leetcode 5——Median of Two Sorted Arrays
题目: There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the ...
- Alpha冲刺No.8
一.站立式会议 解决真实手机中出现的各种问题 细化界面设计 数据库上传与获取日拍 二.项目实际进展 能够上传和获取日拍信息 界面设计微调 三.燃尽图 四.团队合照 五.总结 白天金工实习,晚上才有时间 ...
- Beta敏捷冲刺每日报告——Day3
1.情况简述 Beta阶段Scrum Meeting 敏捷开发起止时间 2017.11.4 00:00 -- 2017.11.5 00:00 讨论时间地点 2017.11.4 晚9:30,电话会议会议 ...
- Alpha冲刺Day8
Alpha冲刺Day8 一:站立式会议 今日安排: 经过为期5天的冲刺,基本完成企业人员模块的开发.因第三方机构与企业存在委托的关系.第三方人员对于风险的自查.风险列表的展示以及自查风险的统计展示(包 ...
- C程序第一次作业
1-1 计算两数的和与差 1 设计思路 (1)主要描述题目算法 第一步:利用指针psum接收sum的地址,指针pdiff接收diff的地址,因此 * psum为sum, * pdiff为diff. 第 ...
- 20145237 实验一 逆向与Bof基础
20145237 实验一 逆向与Bof基础 1.直接修改程序机器指令,改变程序执行流程 此次实验是下载老师传给我们的一个名为pwn1的文件. 首先,用 objdump -d pwn1 对pwn1进行反 ...
- python 单向链表实现
单链表的操作 is_empty() 链表是否为空 length() 链表长度 travel() 遍历整个链表 add(item) 链表头部添加元素 append(item) 链表尾部添加元素 inse ...
- 关于tomcat部署应用的三种方式
关于tomcat部署应用虽然不是一个经常的操作,因为一旦选择了一种部署方式,我们其他的应用就会不经大脑的使用这种既定模式, 如果不使用这种部署方式,但是对于其他的部署方式不是很清楚的话,很容易抓瞎,所 ...
- django的FBV和CBV
title: python djano CBV FBV tags: python, djano, CBV, FBV grammar_cjkRuby: true --- python django的fu ...
- istio入门(00)istio的学习资源
官网:https://istio.io/ 理论知识: http://www.uml.org.cn/wfw/201710131.asp 环境搭建: http://dockone.io/article/2 ...