Prefix tree
Prefix tree
The trie, or prefix tree, is a data structure for storing strings or other sequences in a way that allows for a fast look-up. In its simplest form it can be used as a list of keywords or a dictionary.
By associating each string with an object it can be used as an alternative to a hashmap. The name 'trie' comes from the word 'retrieval'.
The basic idea behind a trie is that each successive letter is stored as a separate node. To find out if the word 'cat' is in the list you start at the root and look up the 'c' node. Having found
the 'c' node you search the list of c's children for an 'a' node, and so on. To differentiate between 'cat' and 'catalog' each word is ended by a special delimiter.
The figure below shows a schematic representation of a partial trie:
Implementation
The fastest way to implement this is with fixed size arrays. Unfortunately this only works if you know which characters can show up in the sequences. For keywords with 26 letters its a fast but space
consuming option, for unicode strings its pretty much impossible.
Instead of fixed sizes arrays you can use a linked list at each node. This has obvious space advantages, since no more empty spaces are stored. Unfortunately searching a long linked list is rather
slow. For example to find the word 'zzz' you might need 3 times 26 steps.
Faster trie algorithms have been devised that lie somewhere between these two extremes in terms of speed and space consumption. These can be found by searching google.
Fun & games with prefix trees
Prefix trees are a bit of an overlooked data structure with lots of interesting possibilities.
Storage
By storing values at each leaf node you can use them as a kind of alternative hashmap, although when working with unicode strings a hashmap will greatly outperform a trie.
As a dictionary
Looking up if a word is in a trie takes O(n) operations, where n is the length of the word. Thus - for array implementations - the lookup speed doesn't change with increasing trie size.
Word completion
Word completion is straightforward to implement using a trie: simply find the node corresponding to the first few letters, and then collape the subtree into a list of possible endings.
This can be used in autocompleting user input in text editors or the T9 dictionary on your phone
Censoring strings
Given a large list of swear words and a string to censor a trie offers a speed advantage over a simple array of strings. If the swear word can appear anywhere in the string you'll need to attempt
to match it from any possible starting offset. With a string of m characters and a list of n words this would mean m*n string comparisons.
Using a trie you can attempt to find a match from each given offset in the string, this means m trie lookups. Since the speed of a trie lookup scales well with an increasing number of words this is
considerably faster than the array lookup.
Java linked list implementation
Just for fun, here's a java linked list implementation. Keep in mind that this is a fairly slow implementation. For serious speed boosts you'll need to investigate double or triple-array tries.
Please note: the version below is a simplified version intended only to give some insight into the workings of the Trie. For the full version please see theDownloads
section.
publicclass Trie
{
/**
* The delimiter used in this word to tell where words end. Without a proper delimiter either A.
* a lookup for 'win' would return false if the list also contained 'windows', or B. a lookup
* for 'mag' would return true if the only word in the list was 'magnolia'
*
* The delimiter should never occur in a word added to the trie.
*/
public
final static
char DELIMITER = '\u0001';
/**
* Creates a new Trie.
*/
public Trie()
{
root =
new Node('r');
size = 0;
}
/**
* Adds a word to the list.
* @param word The word to add.
* @return True if the word wasn't in the list yet
*/
public
boolean add(String word)
{
if (add(root, word+ DELIMITER,
0))
{
size++;
int n
= word.length();
if
(n > maxDepth) maxDepth
= n;
return
true;
}
return
false;
}
/*
* Does the real work of adding a word to the trie
*/
private
boolean add(Node root, String word,int offset)
{
if (offset== word.length())return
false;
int c
= word.charAt(offset);
// Search for node to add to
Node last =
null, next = root.firstChild;
while
(next !=
null)
{
if
(next.value < c)
{
// Not found yet, continue searching
last = next;
next = next.nextSibling;
}
else
if (next.value
== c)
{
// Match found, add remaining word to this node
return add(next, word, offset+
1);
}
// Because of the ordering of the list getting here means we won't
// find a match
else
break;
}
// No match found, create a new node and insert
Node node =
new Node(c);
if (last==
null)
{
// Insert node at the beginning of the list (Works for next == null
// too)
root.firstChild = node;
node.nextSibling = next;
}
else
{
// Insert between last and next
last.nextSibling = node;
node.nextSibling = next;
}
// Add remaining letters
for (int i= offset
+ 1; i< word.length(); i++)
{
node.firstChild =new Node(word.charAt(i));
node = node.firstChild;
}
return
true;
}
/**
* Searches for a word in the list.
*
* @param word The word to search for.
* @return True if the word was found.
*/
public
boolean isEntry(String word)
{
if (word.length()==
0)
throw
new IllegalArgumentException("Word can't be empty");
return isEntry(root, w+ DELIMITER,
0);
}
/*
* Does the real work of determining if a word is in the list
*/
private
boolean isEntry(Node root,
String word, int offset)
{
if (offset== word.length())return
true;
int c
= word.charAt(offset);
// Search for node to add to
Node next = root.firstChild;
while
(next !=
null)
{
if
(next.value < c) next= next.nextSibling;
else
if (next.value
== c)
return isEntry(next, word, offset +1);
else
return false;
}
return
false;
}
/**
* Returns the size of this list;
*/
public
int size()
{
return size;
}
/**
* Returns all words in this list starting with the given prefix
*
* @param prefix The prefix to search for.
* @return All words in this list starting with the given prefix, or if no such words are found,
* an array containing only the suggested prefix.
*/
public
String[] suggest(String prefix)
{
return suggest(root, prefix,0);
}
/*
* Recursive function for finding all words starting with the given prefix
*/
private
String[] suggest(Node root,String word,
int offset)
{
if (offset== word.length())
{
ArrayList<String> words
= new ArrayList<String>(size);
char[] chars=
new
char[maxDepth];
for
(int i
= 0; i < offset; i++)
chars[i]
= word.charAt(i);
getAll(root, words, chars, offset);
return words.toArray(newString[words.size()]);
}
int c
= word.charAt(offset);
// Search for node to add to
Node next = root.firstChild;
while
(next !=
null)
{
if
(next.value < c) next= next.nextSibling;
else
if (next.value
== c)
return suggest(next, word, offset +1);
else
break;
}
return
new String[]{ word
};
}
/**
* Searches a string for words present in the trie and replaces them with stars (asterixes).
* @param z The string to censor
*/
public
String censor(String s)
{
if (size==
0)
return s;
String z = s.toLowerCase();
int n
= z.length();
StringBuilder buffer =
new StringBuilder(n);
int match;
char star
= '*';
for (int i=
0; i < n;)
{
match = longestMatch(root, z, i,0,
0);
if
(match > 0)
{
for
(int j
= 0; j < match; j++)
{
buffer.append(star);
i++;
}
}
else
{
buffer.append(s.charAt(i++));
}
}
return buffer.toString();
}
/*
* Finds the longest matching word in the trie that starts at the given offset...
*/
private
int longestMatch(Node root,
String word, int offset,int depth,
int maxFound)
{
// Uses delimiter = first in the list!
Node next = root.firstChild;
if (next.value== DELIMITER) maxFound
= depth;
if (offset== word.length())return
maxFound;
int c
= word.charAt(offset);
while
(next !=
null)
{
if
(next.value < c) next= next.nextSibling;
else
if (next.value
== c)
return longestMatch(next, word,
offset + 1, depth
+ 1, maxFound);
else
return maxFound;
}
return maxFound;
}
/*
* Represents a node in the trie. Because a node's children are stored in a linked list this
* data structure takes the odd structure of node with a firstChild and a nextSibling.
*/
private
class Node
{
public
int value;
public Node firstChild;
public Node nextSibling;
public Node(int value)
{
this.value= value;
firstChild =
null;
nextSibling =
null;
}
}
private Node root;
private
int size;
private
int maxDepth; // Not exact, but bounding for the maximum
}
Please note: the code given above is intended only to give some insight into the workings of the Trie. For the full version of the class please see theDownloads
section.
Prefix tree的更多相关文章
- Leetcode: Implement Trie (Prefix Tree) && Summary: Trie
Implement a trie with insert, search, and startsWith methods. Note: You may assume that all inputs a ...
- leetcode面试准备:Implement Trie (Prefix Tree)
leetcode面试准备:Implement Trie (Prefix Tree) 1 题目 Implement a trie withinsert, search, and startsWith m ...
- 【LeetCode】208. Implement Trie (Prefix Tree)
Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith methods. Note:You ...
- [LeetCode] 208. Implement Trie (Prefix Tree) ☆☆☆
Implement a trie with insert, search, and startsWith methods. Note:You may assume that all inputs ar ...
- 笔试算法题(39):Trie树(Trie Tree or Prefix Tree)
议题:TRIE树 (Trie Tree or Prefix Tree): 分析: 又称字典树或者前缀树,一种用于快速检索的多叉树结构:英文字母的Trie树为26叉树,数字的Trie树为10叉树:All ...
- Trie树(Prefix Tree)介绍
本文用尽量简洁的语言介绍一种树形数据结构 -- Trie树. 一.什么是Trie树 Trie树,又叫字典树.前缀树(Prefix Tree).单词查找树 或 键树,是一种多叉树结构.如下图: 上图是一 ...
- 字典树(查找树) leetcode 208. Implement Trie (Prefix Tree) 、211. Add and Search Word - Data structure design
字典树(查找树) 26个分支作用:检测字符串是否在这个字典里面插入.查找 字典树与哈希表的对比:时间复杂度:以字符来看:O(N).O(N) 以字符串来看:O(1).O(1)空间复杂度:字典树远远小于哈 ...
- LeetCode208 Implement Trie (Prefix Tree). LeetCode211 Add and Search Word - Data structure design
字典树(Trie树相关) 208. Implement Trie (Prefix Tree) Implement a trie with insert, search, and startsWith ...
- 【leetcode】208. Implement Trie (Prefix Tree 字典树)
A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently s ...
随机推荐
- actionbar详解(二)
经过前面两篇文章的学习,我想大家对ActionBar都已经有一个相对较为深刻的理解了.唯一欠缺的是,前面我们都只是学习了理论知识而已,虽然知识点已经掌握了,但是真正投入到项目实战当中时会不会掉链子还很 ...
- linux的 压缩与解压 命令集
bzip2压缩费时但效果好,而且支持hadoop的hdfs文件切分,gzip不行 bzip2 [-cdz] 文件名 -c :将压缩的过程输出到屏幕 -d :解压缩 -z :压缩 -# :压缩比的参数, ...
- 插件占坑,四大组件动态注册前奏(三) 系统BroadCast的注册发送流程
转载请注明出处:http://blog.csdn.net/hejjunlin/article/details/52204143 前言:为什么要了解系统Activity,Service,BroadCas ...
- javascript中的AJAX
兼容地获得XMLHttpRequest对象: var xhr = null; if(window.XMLHttpRequest){ //非IE浏览器 xhr = window.XMLHttpReque ...
- Mac下安装Homebrew并升级subversion
1. 切 Tencent-GuestWiFi2. $ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/ins ...
- Android初级教程理论知识(第九章多媒体编程)
多媒体概念 文字.图片.音频.视频 计算机图片大小的计算 图片大小 = 图片的总像素 * 每个像素占用的大小 单色图:每个像素占用1/8个字节 16色图:每个像素占用1/2个字节 256色图:每个像素 ...
- Cocos2D iOS之旅:如何写一个敲地鼠游戏(六):放置地鼠
大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;) 免责申明:本博客提供的所有翻译文章原稿均来自互联网,仅供学习交流 ...
- java 之容器
在Java中,我们想要保存对象可以使用很多种手段.我们之前了解过的数组就是其中之一.但是数组具有固定的尺寸,而通常来说,程序总是在运行时根据条件来创建对象,我们无法预知将要创建对象的个数以及类型,所以 ...
- 【一天一道LeetCode】#106. Construct Binary Tree from Inorder and Postorder Traversall
一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 来源:http ...
- Chapter 2 User Authentication, Authorization, and Security(8):创建映射到登录名的数据库用户
原文出处:http://blog.csdn.net/dba_huangzj/article/details/38944121,专题目录:http://blog.csdn.net/dba_huangzj ...