Given a set of words (without duplicates), find all word squares you can build from them.

A sequence of words forms a valid word square if the kth row and column read the exact same string, where 0 ≤ k < max(numRows, numColumns).

For example, the word sequence ["ball","area","lead","lady"] forms a word square because each word reads the same both horizontally and vertically.

b a l l
a r e a
l e a d
l a d y

Note:

  1. There are at least 1 and at most 1000 words.
  2. All words will have the exact same length.
  3. Word length is at least 1 and at most 5.
  4. Each word contains only lowercase English alphabet a-z.

Example 1:

Input:
["area","lead","wall","lady","ball"] Output:
[
[ "wall",
"area",
"lead",
"lady"
],
[ "ball",
"area",
"lead",
"lady"
]
] Explanation:
The output consists of two word squares. The order of output does not matter (just the order of words in each word square matters).

Example 2:

Input:
["abat","baba","atan","atal"] Output:
[
[ "baba",
"abat",
"baba",
"atan"
],
[ "baba",
"abat",
"baba",
"atal"
]
] Explanation:
The output consists of two word squares. The order of output does not matter (just the order of words in each word square matters).

这道题是之前那道 Valid Word Square 的延伸,由于要求出所有满足要求的单词平方,所以难度大大的增加了,不要幻想着可以利用之前那题的解法来暴力破解,OJ 不会答应的。那么根据以往的经验,对于这种要打印出所有情况的题的解法大多都是用递归来解,那么这题的关键是根据前缀来找单词,如果能利用合适的数据结构来建立前缀跟单词之间的映射,使得我们能快速的通过前缀来判断某个单词是否存在,这是解题的关键。对于建立这种映射,这里主要有两种方法,一种是利用 HashMap 来建立前缀和所有包含此前缀单词的集合之前的映射,第二种方法是建立前缀树 Trie,顾名思义,前缀树专门就是为这种问题设计的。首先来看第一种方法,用 HashMap 来建立映射的方法,就是取出每个单词的所有前缀,然后将该单词加入该前缀对应的集合中去,然后建立一个空的 nxn 的 char 矩阵,其中n为单词的长度,目标就是来把这个矩阵填满,从0开始遍历,先取出长度为0的前缀,即空字符串,由于在建立映射的时候,空字符串也和每个单词的集合建立了映射,然后遍历这个集合,用遍历到的单词的i位置字符,填充矩阵 mat[i][i],然后j从 i+1 出开始遍历,对应填充矩阵 mat[i][j] 和 mat[j][i],然后根据第j行填充得到的前缀,到哈希表中查看有没单词,如果没有,就 break 掉,如果有,则继续填充下一个位置。最后如果 j==n 了,说明第0行和第0列都被填好了,再调用递归函数,开始填充第一行和第一列,依次类推,直至填充完成,参见代码如下:

 

解法一:

class Solution {
public:
vector<vector<string>> wordSquares(vector<string>& words) {
vector<vector<string>> res;
unordered_map<string, set<string>> m;
int n = words[].size();
for (string word : words) {
for (int i = ; i < n; ++i) {
string key = word.substr(, i);
m[key].insert(word);
}
}
vector<vector<char>> mat(n, vector<char>(n));
helper(, n, mat, m, res);
return res;
}
void helper(int i, int n, vector<vector<char>>& mat, unordered_map<string, set<string>>& m, vector<vector<string>>& res) {
if (i == n) {
vector<string> out;
for (int j = ; j < n; ++j) out.push_back(string(mat[j].begin(), mat[j].end()));
res.push_back(out);
return;
}
string key = string(mat[i].begin(), mat[i].begin() + i);
for (string str : m[key]) {
mat[i][i] = str[i];
int j = i + ;
for (; j < n; ++j) {
mat[i][j] = str[j];
mat[j][i] = str[j];
if (!m.count(string(mat[j].begin(), mat[j].begin() + i + ))) break;
}
if (j == n) helper(i + , n, mat, m, res);
}
}
};

下面来看建立前缀树 Trie 的方法,这种方法的难点是看能不能熟练的写出 Trie 的定义,还有构建过程,以及后面在递归函数中,如果利用前缀树来快速查找单词的前缀,总之,这道题是前缀树的一种经典的应用,能白板写出来就说明基本上已经掌握了前缀树了,参见代码如下:

解法二:

class Solution {
public:
struct TrieNode {
vector<int> indexs;
vector<TrieNode*> children;
TrieNode(): children(, nullptr) {}
};
TrieNode* buildTrie(vector<string>& words) {
TrieNode *root = new TrieNode();
for (int i = ; i < words.size(); ++i) {
TrieNode *t = root;
for (int j = ; j < words[i].size(); ++j) {
if (!t->children[words[i][j] - 'a']) {
t->children[words[i][j] - 'a'] = new TrieNode();
}
t = t->children[words[i][j] - 'a'];
t->indexs.push_back(i);
}
}
return root;
}
vector<vector<string>> wordSquares(vector<string>& words) {
TrieNode *root = buildTrie(words);
vector<string> out(words[].size());
vector<vector<string>> res;
for (string word : words) {
out[] = word;
helper(words, , root, out, res);
}
return res;
}
void helper(vector<string>& words, int level, TrieNode* root, vector<string>& out, vector<vector<string>>& res) {
if (level >= words[].size()) {
res.push_back(out);
return;
}
string str = "";
for (int i = ; i < level; ++i) {
str += out[i][level];
}
TrieNode *t = root;
for (int i = ; i < str.size(); ++i) {
if (!t->children[str[i] - 'a']) return;
t = t->children[str[i] - 'a'];
}
for (int idx : t->indexs) {
out[level] = words[idx];
helper(words, level + , root, out, res);
}
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/425

类似题目:

Valid Word Square

参考资料:

https://leetcode.com/problems/word-squares/

https://leetcode.com/problems/word-squares/discuss/91380/java-53ms-dfs-hashmap

https://leetcode.com/problems/word-squares/discuss/91344/Short-PythonC%2B%2B-solution

https://leetcode.com/problems/word-squares/discuss/91333/Explained.-My-Java-solution-using-Trie-126ms-1616

https://leetcode.com/problems/word-squares/discuss/91337/70ms-Concise-C%2B%2B-Solution-Using-Trie-and-Backtracking

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Word Squares 单词平方的更多相关文章

  1. Leetcode: Word Squares && Summary: Another Important Implementation of Trie(Retrieve all the words with a given Prefix)

    Given a set of words (without duplicates), find all word squares you can build from them. A sequence ...

  2. [LeetCode] Word Frequency 单词频率

    Write a bash script to calculate the frequency of each word in a text file words.txt. For simplicity ...

  3. [LeetCode] Word Abbreviation 单词缩写

    Given an array of n distinct non-empty strings, you need to generate minimal possible abbreviations ...

  4. [Leetcode] word search 单词查询

    Given a 2D board and a word, find if the word exists in the grid. The word can be constructed from l ...

  5. [Leetcode] word ladder 单词阶梯

    Given two words (start and end), and a dictionary, find the length of shortest transformation sequen ...

  6. LeetCode:Word Ladder I II

    其他LeetCode题目欢迎访问:LeetCode结题报告索引 LeetCode:Word Ladder Given two words (start and end), and a dictiona ...

  7. [leetcode]Word Ladder II @ Python

    [leetcode]Word Ladder II @ Python 原题地址:http://oj.leetcode.com/problems/word-ladder-ii/ 参考文献:http://b ...

  8. [Lintcode]Word Squares(DFS|字符串)

    题意 略 分析 0.如果直接暴力1000^5会TLE,因此考虑剪枝 1.如果当前需要插入第i个单词,其剪枝如下 1.1 其前缀(0~i-1)已经知道,必定在前缀对应的集合中找 – 第一个词填了ball ...

  9. Word Squares

    Description Given a set of words without duplicates, find all word squares you can build from them. ...

随机推荐

  1. Scala集合和Java集合对应转换关系

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 用Scala编码的时候,经常会遇到scala集合和Java集合互相转换的case,特意mark一 ...

  2. Java进击C#——应用开发之WinForm开发

    本章简言 上一章笔者介绍了关于WinForm环境.这一章笔者将继续讲WinForm.只不过更加的面向开发了.事实就是在学习工具箱里面的控件.对于WinForm开发来讲,企业对他的要求并没有那么高.但是 ...

  3. User Growth Using Deeplink. (part1)

    转载请注明来源 http://www.cnblogs.com/hucn/p/5917924.html 活跃人数是衡量app一项关键指标, dau, mau, 有了流量才能给业务发展提供养分和空间. a ...

  4. 1.ASP.NET MVC使用EPPlus,导出数据到Excel中

    好久没写博客了,今天特地来更新一下,今天我们要学习的是如何导出数据到Excel文件中,这里我使用的是免费开源的Epplus组件. 源代码下载:https://github.com/caofangshe ...

  5. TeamCity : .NET Core 插件

    笔者在<TeamCity : 配置 Build 过程>一文中提到 "TeamCity 内置支持几乎所有的 build 类型".在当今这个软件语言和各种框架飞速发展的时代 ...

  6. [Tool] github 入手教程

    简单的介绍一下 Github 的基本操作. 主页:https://github.com/ 首先自然是在 GitHub 注册一个帐号了.然后开始正文吧. Git 基本介绍 Git 是属于分布式版本控制系 ...

  7. bzoj2693--莫比乌斯反演+积性函数线性筛

    推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...

  8. 静态代理和利用反射形成的动态代理(JDK动态代理)

    代理模式 代理模式的定义:为其他对象提供一种代理以控制对这个对象的访问.在某些情况下,一个对象不适合或者不能直接引用另一个对象,而代理对象可以在客户端和目标对象之间起到中介的作用. 静态代理 1.新建 ...

  9. Maven远程仓库的配置

    在很多情况下,默认的中央仓库无法满足项目的需求,可能项目需要的构件存在于另外一个远程仓库中,如JBoss Maven仓库.这时,可以在POM中配置该仓库,见代码如下: <!-- 远程仓库的配置 ...

  10. JS高程5.引用类型(4)Array类型的各类方法

    一.转换方法 所有的对象都具有toLocaleString(),toString()和valueOf()方法.调用toString()方法会返回由数组中的每个值的字符串拼接而成的一个以逗号分隔的字符串 ...