[LeetCode] Word Squares 单词平方
Given a set of words (without duplicates), find all word squares you can build from them.
A sequence of words forms a valid word square if the kth row and column read the exact same string, where 0 ≤ k < max(numRows, numColumns).
For example, the word sequence ["ball","area","lead","lady"]
forms a word square because each word reads the same both horizontally and vertically.
b a l l
a r e a
l e a d
l a d y
Note:
- There are at least 1 and at most 1000 words.
- All words will have the exact same length.
- Word length is at least 1 and at most 5.
- Each word contains only lowercase English alphabet
a-z
.
Example 1:
Input:
["area","lead","wall","lady","ball"] Output:
[
[ "wall",
"area",
"lead",
"lady"
],
[ "ball",
"area",
"lead",
"lady"
]
] Explanation:
The output consists of two word squares. The order of output does not matter (just the order of words in each word square matters).
Example 2:
Input:
["abat","baba","atan","atal"] Output:
[
[ "baba",
"abat",
"baba",
"atan"
],
[ "baba",
"abat",
"baba",
"atal"
]
] Explanation:
The output consists of two word squares. The order of output does not matter (just the order of words in each word square matters).
这道题是之前那道 Valid Word Square 的延伸,由于要求出所有满足要求的单词平方,所以难度大大的增加了,不要幻想着可以利用之前那题的解法来暴力破解,OJ 不会答应的。那么根据以往的经验,对于这种要打印出所有情况的题的解法大多都是用递归来解,那么这题的关键是根据前缀来找单词,如果能利用合适的数据结构来建立前缀跟单词之间的映射,使得我们能快速的通过前缀来判断某个单词是否存在,这是解题的关键。对于建立这种映射,这里主要有两种方法,一种是利用 HashMap 来建立前缀和所有包含此前缀单词的集合之前的映射,第二种方法是建立前缀树 Trie,顾名思义,前缀树专门就是为这种问题设计的。首先来看第一种方法,用 HashMap 来建立映射的方法,就是取出每个单词的所有前缀,然后将该单词加入该前缀对应的集合中去,然后建立一个空的 nxn 的 char 矩阵,其中n为单词的长度,目标就是来把这个矩阵填满,从0开始遍历,先取出长度为0的前缀,即空字符串,由于在建立映射的时候,空字符串也和每个单词的集合建立了映射,然后遍历这个集合,用遍历到的单词的i位置字符,填充矩阵 mat[i][i],然后j从 i+1 出开始遍历,对应填充矩阵 mat[i][j] 和 mat[j][i],然后根据第j行填充得到的前缀,到哈希表中查看有没单词,如果没有,就 break 掉,如果有,则继续填充下一个位置。最后如果 j==n 了,说明第0行和第0列都被填好了,再调用递归函数,开始填充第一行和第一列,依次类推,直至填充完成,参见代码如下:
解法一:
class Solution {
public:
vector<vector<string>> wordSquares(vector<string>& words) {
vector<vector<string>> res;
unordered_map<string, set<string>> m;
int n = words[].size();
for (string word : words) {
for (int i = ; i < n; ++i) {
string key = word.substr(, i);
m[key].insert(word);
}
}
vector<vector<char>> mat(n, vector<char>(n));
helper(, n, mat, m, res);
return res;
}
void helper(int i, int n, vector<vector<char>>& mat, unordered_map<string, set<string>>& m, vector<vector<string>>& res) {
if (i == n) {
vector<string> out;
for (int j = ; j < n; ++j) out.push_back(string(mat[j].begin(), mat[j].end()));
res.push_back(out);
return;
}
string key = string(mat[i].begin(), mat[i].begin() + i);
for (string str : m[key]) {
mat[i][i] = str[i];
int j = i + ;
for (; j < n; ++j) {
mat[i][j] = str[j];
mat[j][i] = str[j];
if (!m.count(string(mat[j].begin(), mat[j].begin() + i + ))) break;
}
if (j == n) helper(i + , n, mat, m, res);
}
}
};
下面来看建立前缀树 Trie 的方法,这种方法的难点是看能不能熟练的写出 Trie 的定义,还有构建过程,以及后面在递归函数中,如果利用前缀树来快速查找单词的前缀,总之,这道题是前缀树的一种经典的应用,能白板写出来就说明基本上已经掌握了前缀树了,参见代码如下:
解法二:
class Solution {
public:
struct TrieNode {
vector<int> indexs;
vector<TrieNode*> children;
TrieNode(): children(, nullptr) {}
};
TrieNode* buildTrie(vector<string>& words) {
TrieNode *root = new TrieNode();
for (int i = ; i < words.size(); ++i) {
TrieNode *t = root;
for (int j = ; j < words[i].size(); ++j) {
if (!t->children[words[i][j] - 'a']) {
t->children[words[i][j] - 'a'] = new TrieNode();
}
t = t->children[words[i][j] - 'a'];
t->indexs.push_back(i);
}
}
return root;
}
vector<vector<string>> wordSquares(vector<string>& words) {
TrieNode *root = buildTrie(words);
vector<string> out(words[].size());
vector<vector<string>> res;
for (string word : words) {
out[] = word;
helper(words, , root, out, res);
}
return res;
}
void helper(vector<string>& words, int level, TrieNode* root, vector<string>& out, vector<vector<string>>& res) {
if (level >= words[].size()) {
res.push_back(out);
return;
}
string str = "";
for (int i = ; i < level; ++i) {
str += out[i][level];
}
TrieNode *t = root;
for (int i = ; i < str.size(); ++i) {
if (!t->children[str[i] - 'a']) return;
t = t->children[str[i] - 'a'];
}
for (int idx : t->indexs) {
out[level] = words[idx];
helper(words, level + , root, out, res);
}
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/425
类似题目:
参考资料:
https://leetcode.com/problems/word-squares/
https://leetcode.com/problems/word-squares/discuss/91380/java-53ms-dfs-hashmap
https://leetcode.com/problems/word-squares/discuss/91344/Short-PythonC%2B%2B-solution
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Word Squares 单词平方的更多相关文章
- Leetcode: Word Squares && Summary: Another Important Implementation of Trie(Retrieve all the words with a given Prefix)
Given a set of words (without duplicates), find all word squares you can build from them. A sequence ...
- [LeetCode] Word Frequency 单词频率
Write a bash script to calculate the frequency of each word in a text file words.txt. For simplicity ...
- [LeetCode] Word Abbreviation 单词缩写
Given an array of n distinct non-empty strings, you need to generate minimal possible abbreviations ...
- [Leetcode] word search 单词查询
Given a 2D board and a word, find if the word exists in the grid. The word can be constructed from l ...
- [Leetcode] word ladder 单词阶梯
Given two words (start and end), and a dictionary, find the length of shortest transformation sequen ...
- LeetCode:Word Ladder I II
其他LeetCode题目欢迎访问:LeetCode结题报告索引 LeetCode:Word Ladder Given two words (start and end), and a dictiona ...
- [leetcode]Word Ladder II @ Python
[leetcode]Word Ladder II @ Python 原题地址:http://oj.leetcode.com/problems/word-ladder-ii/ 参考文献:http://b ...
- [Lintcode]Word Squares(DFS|字符串)
题意 略 分析 0.如果直接暴力1000^5会TLE,因此考虑剪枝 1.如果当前需要插入第i个单词,其剪枝如下 1.1 其前缀(0~i-1)已经知道,必定在前缀对应的集合中找 – 第一个词填了ball ...
- Word Squares
Description Given a set of words without duplicates, find all word squares you can build from them. ...
随机推荐
- 【基于WPF+OneNote+Oracle的中文图片识别系统阶段总结】之篇四:关于OneNote入库处理以及审核
篇一:WPF常用知识以及本项目设计总结:http://www.cnblogs.com/baiboy/p/wpf.html 篇二:基于OneNote难点突破和批量识别:http://www.cnblog ...
- 《HelloGitHub月刊》第09期
<HelloGitHub>第09期 兴趣是最好的老师,<HelloGitHub>就是帮你找到兴趣! 前言 转眼就到年底了,月刊做到了第09期,感谢大家一路的支持和帮助
- python中的str,unicode和gb2312
实例1: v1=u '好神奇的问题!?' type(v1)->unicode v1.decode("utf-8")# not work,because v1 is unico ...
- OSGi 基本原理
定义 OSGi(Open Service Gateway Initiative)技术是面向Java的动态模型系统. 这个框架实现了一个优雅.完整和动态地组价模型.应用程序(称为bundle)无序重新引 ...
- 图解使用VS的安装项目打包程序
背景 这段时间一直在做客户端程序的打包程序,遇到各种坑.因为以前没有任何这方面的经验,历经各种折腾,费尽九牛二虎之力总算是完成了. 虽然没有太多技术含量,但是因为挺繁琐的,所以还是在此记录一下. 由于 ...
- 从零开始学 Java - Spring 集成 ActiveMQ 配置(一)
你家小区下面有没有快递柜 近两年来,我们收取快递的方式好像变了,变得我们其实并不需要见到快递小哥也能拿到自己的快递了.对,我说的就是类似快递柜.菜鸟驿站这类的代收点的出现,把我们原来快递小哥必须拿着快 ...
- Effective前端4:尽可能地使用伪元素
伪元素是一个好东西,但是很多人都没怎么用,因为他们觉得伪元素太诡异了.其实使用伪元素有很多好处,最大的好处是它可以简化页面的html标签,同时用起来也很方便,善于使用伪元素可以让你的页面更加地简洁优雅 ...
- Design Patterns Simplified - Part 3 (Simple Factory)【设计模式简述--第三部分(简单工厂)】
原文链接:http://www.c-sharpcorner.com/UploadFile/19b1bd/design-patterns-simplified-part3-factory/ Design ...
- OData Client Code Generator
转发. [Tutorial & Sample] How to use OData Client Code Generator to generate client-side proxy cla ...
- JAVA基础培训(isoft)
我们