传送门:

Dijkstra

Bellman-Ford

SPFA

Floyd

1.Dijkstra算法的局限性

像上图,如果用dijkstra算法的话就会出错,因为如果从1开始,第一步dist[2] = 7, dist[3] = 5;在其中找出最小的边是dist[3] = 5;然后更新dist[2] = 0,最终得到dist[2] = 0,dist[3] = 5,而实际上dist[3] = 2;所以如果图中含有负权值,dijkstra失效

2.Bellman-Ford算法思想

适用前提:没有负环(或称为负权值回路),因为有负环的话距离为负无穷。

构造一个最短路径长度数组序列dist1[u] dist2[u]...distn-1[u],其中:
dist1[u]为从源点v0出发到终点u的只经过一条边的最短路径长度,并有dist1[u] = Edge[v0][u]

dist2[u]为从源点v0出发最多经过不构成负权值回路的两条边到终点u的最短路径长度

dist3[u]为从源点v0出发最多经过不构成负权值回路的三条边到终点u的最短路径长度

................

distn-1[u]为从源点v0出发最多经过不构成负权值回路的n-1条边到终点u的最短路径长度

算法最终目的是计算出distn-1[u],即为源点到顶点u的最短路径长度

初始:dist1[u] = Edge[v0][u]

递推:distk[u] = min(distk-1[u], min{distk-1[j] + Edge[j][u]})(松弛操作,迭代n-2次)

3.本质思想:
在从distk-1[u]递推到distk[u]的时候,Bellman-Ford算法的本质是对每条边<u, v>进行判断:设边<u, v>的权值为w(u, v),如果边<u, v>的引入会使得distk-1[v]的值再减小,就要修改distk-1[v],即:如果distk-1[u] + w(u, v) < distk-1[v],,那么distk[v] = distk-1[u] + w(u, v),这个称为一次松弛

所以递推公式可改为:

初始:dist0[u] = INF dist0[v0] = 0(v0是源点)

递推:对于每条边(u, v) distk[v] = min(distk-1[v], distk-1[u] + w(u, v))(松弛操作,迭代n-1次)

如果迭代n-1次后,再次迭代,如果此时还有dist会更新,说明存在负环。

无负环的时候,迭代更新次数最多为n-1次,所以设置一个更新变量可以在不更新的时候直接跳出循环

拓展:

Bellman-Ford算法还能用来求最长路或者判断正环,思路是dist数组含义是从原点出发到其他每个顶点的最长路径的长度,初始时,各个顶点dist为0,在从distk-1[u]递推到distk[u]的时候,Bellman-Ford算法的本质是对每条边<u, v>进行判断:设边<u, v>的权值为w(u, v),如果边<u, v>的引入会使得distk-1[v]的值再增加,就要修改distk-1[v],即:如果distk-1[u] + w(u, v) > distk-1[v],,那么distk[v] = distk-1[u] + w(u, v)。例题:POJ-1860

4.代码实现:时间复杂度O(nm)(n为点数,m为边数)

输入:

7 10
0 1 6
0 2 5
0 3 5
1 4 -1
2 1 -2
2 4 1
3 2 -2
3 5 -1
4 6 3
5 6 3

输出:

从0到1距离是: 1   0->3->2->1
从0到2距离是: 3   0->3->2
从0到3距离是: 5   0->3
从0到4距离是: 0   0->3->2->1->4
从0到5距离是: 4   0->3->5
从0到6距离是: 3   0->3->2->1->4->6
不存在负环

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<sstream>
using namespace std;
typedef long long ll;
const int maxn = + ;
const int INF = << ;
int T, n, m, cases;
struct edge
{
int u, v, w;
};
edge a[maxn];
int path[maxn], d[maxn];
bool Bellman(int v0)
{
for(int i = ; i < n; i++)d[i] = INF, path[i] = -;
d[v0] = ;
for(int i = ; i < n; i++)//迭代n次,如果第n次还在更新,说明有负环
{
bool update = ;
for(int j = ; j < m; j++)
{
int x = a[j].u, y = a[j].v;
//cout<<x<<" "<<y<<" "<<a[j].w<<endl;
if(d[x] < INF && d[x] + a[j].w < d[y])
{
d[y] = d[x] + a[j].w;
path[y] = x;
update = ;
if(i == n - )//说明第n次还在更新
{
return true;//返回真,真的存在负环
}
}
}
if(!update)break;//如果没更新了,说明已经松弛完毕
}
for(int i = ; i < n; i++)
{
if(i == v0)continue;
printf("从%d到%d距离是:%2d ", v0, i, d[i]);
stack<int>q;
int x = i;
while(path[x] != -)
{
q.push(x);
x = path[x];
}
cout<<v0;
while(!q.empty())
{
cout<<"->"<<q.top();
q.pop();
}
cout<<endl;
}
return false;
}
int main()
{
cin >> n >> m;
for(int i = ; i < m; i++)cin >> a[i].u >> a[i].v >> a[i].w;
if(Bellman())cout<<"存在负环"<<endl;
else cout<<"不存在负环"<<endl;
return ;
}

单源最短路径---Bellman-Ford算法的更多相关文章

  1. 单源最短路径(dijkstra算法)php实现

    做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么( ...

  2. 【算法导论】单源最短路径之Dijkstra算法

    Dijkstra算法解决了有向图上带正权值的单源最短路径问题,其运行时间要比Bellman-Ford算法低,但适用范围比Bellman-Ford算法窄. 迪杰斯特拉提出的按路径长度递增次序来产生源点到 ...

  3. 【算法导论】单源最短路径之Bellman-Ford算法

    单源最短路径指的是从一个顶点到其它顶点的具有最小权值的路径.我们之前提到的广度优先搜索算法就是一种无权图上执行的最短路径算法,即在所有的边都具有单位权值的图的一种算法.单源最短路径算法可以解决图中任意 ...

  4. 单源最短路径:Dijkstra算法(堆优化)

    前言:趁着对Dijkstra还有点印象,赶快写一篇笔记. 注意:本文章面向已有Dijkstra算法基础的童鞋. 简介 单源最短路径,在我的理解里就是求从一个源点(起点)到其它点的最短路径的长度. 当然 ...

  5. 0016:单源最短路径(dijkstra算法)

    题目链接:https://www.luogu.com.cn/problem/P4779 题目描述:给定一个 n 个点,m 条有向边的带非负权图,计算从 s 出发,到每个点的距离. 这道题就是一个单源最 ...

  6. 单源最短路径问题-Dijkstra算法

    同样是层序遍历,在每次迭代中挑出最小的设置为已知 ===================================== 2017年9月18日10:00:03 dijkstra并不是完全的层序遍历 ...

  7. 单源最短路径的Bellman-Ford 算法

    1.算法标签 BFS 2.算法概念 Bellman-Ford算法有这么一个先验知识在里面,那就是最短路径至多在N步之内,其中N为节点数,否则说明图中有负权值的回路,这样的图是找不到最短路径的.因此Be ...

  8. 单源最短路径问题(dijkstra算法 及其 优化算法(优先队列实现))

    #define _CRT_SECURE_NO_WARNINGS /* 7 10 0 1 5 0 2 2 1 2 4 1 3 2 2 3 6 2 4 10 3 5 1 4 5 3 4 6 5 5 6 9 ...

  9. Til the Cows Come Home(poj 2387 Dijkstra算法(单源最短路径))

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 32824   Accepted: 11098 Description Bes ...

  10. Dijkstra算法解决单源最短路径

    单源最短路径问题:给定一个带权有向图 G = (V, E), 其中每条边的权是一个实数.另外,还给定 V 中的一个顶点,称为源.现在要计算从源到其他所有各顶点的最短路径长度.这里的长度是指路上各边权之 ...

随机推荐

  1. 希尔排序(shell‘ sort)

    希尔排序是1959 年由D.L.Shell 提出来的,相对直接排序有较大的改进.希尔排序又叫缩小增量排序 基本思想: 先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录 ...

  2. MyBatis-plus 代码生成器

    1.添加pom文件依赖 <!-- Mybatis-Plus 自动生成实体类--> <dependency> <groupId>com.baomidou</gr ...

  3. postman简单教程,使用tests模块来验证接口时是否通过

    接口测试醉重要的就是返回数据的检查,一个简单的接口,我们可以肉眼检查返回数据,但接口一旦多起来且复杂,每次的检查都会很费劲,此时我们就需要postman 的tests模块来代替 概念: Postman ...

  4. http的CA证书安装(也就是https)

    近几年随着安全意识的提高,https流行起来,很多小伙伴不太了解https是什么,其实http和https并没有区别,简单的来说,https就是将http通信进行了加密和解密的一个过程.加上谷歌浏览器 ...

  5. 爬取博主所有文章并保存到本地(.txt版)--python3.6

    闲话: 一位前辈告诉我大学期间要好好维护自己的博客,在博客园发布很好,但是自己最好也保留一个备份. 正好最近在学习python,刚刚从py2转到py3,还有点不是很习惯,正想着多练习,于是萌生了这个想 ...

  6. css3图片模糊过滤特效

    体验效果:点击这里查看效果 代码如下:<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" " ...

  7. Java并发编程实战(chapter_2)(对象发布、不变性、设计线程安全类)

    一.发布与溢出 "发布(Publish)"一个对象的意思是指,使对象能够在当前作用于之外的代码中使用.这个"之外",尤为关键,各种出问题的地方,都是因为这个&q ...

  8. 如何在http请求中使用线程池(干货)

    这段时间对网络爬虫比较感兴趣,实现起来实际上比较简单.无非就是http的web请求,然后对返回的html内容进行内容筛选.本文的重点不在于这里,而在于多线程做http请求.例如我要实现如下场景:我有N ...

  9. SciPy - 科学计算库(上)

    SciPy - 科学计算库(上) 一.实验说明 SciPy 库建立在 Numpy 库之上,提供了大量科学算法,主要包括这些主题: 特殊函数 (scipy.special) 积分 (scipy.inte ...

  10. 自主学习之RxSwift(一) -----Driver

    对于RxSwift,我也是初学者,此系列来记录我学习RxSwift的历程! (一) 想必关于Drive大家一定在RxSwift的Demo中看到过,也一定有些不解,抱着一起学习的态度,来了解一下Driv ...