You are given two arrays A and B, each of size n. The error, E, between these two arrays is defined . You have to perform exactly k1 operations on array A and exactly k2 operations on array B. In one operation, you have to choose one element of the array and increase or decrease it by 1.

Output the minimum possible value of error after k1 operations on array A and k2operations on array B have been performed.

Input

The first line contains three space-separated integers n (1 ≤ n ≤ 103), k1 and k2 (0 ≤ k1 + k2 ≤ 103k1 and k2 are non-negative) — size of arrays and number of operations to perform on A and B respectively.

Second line contains n space separated integers a1, a2, ..., an ( - 106 ≤ ai ≤ 106) — array A.

Third line contains n space separated integers b1, b2, ..., bn ( - 106 ≤ bi ≤ 106)— array B.

Output

Output a single integer — the minimum possible value of  after doing exactly k1 operations on array A and exactly k2 operations on array B.

Examples

Input
2 0 0
1 2
2 3
Output
2
Input
2 1 0
1 2
2 2
Output
0
Input
2 5 7
3 4
14 4
Output
1

Note

In the first sample case, we cannot perform any operations on A or B. Therefore the minimum possible error E = (1 - 2)2 + (2 - 3)2 = 2.

In the second sample case, we are required to perform exactly one operation on A. In order to minimize error, we increment the first element of A by 1. Now, A = [2, 2]. The error is now E = (2 - 2)2 + (2 - 2)2 = 0. This is the minimum possible error obtainable.

In the third sample case, we can increase the first element of A to 8, using the all of the 5 moves available to us. Also, the first element of B can be reduced to 8using the 6 of the 7 available moves. Now A = [8, 4] and B = [8, 4]. The error is now E = (8 - 8)2 + (4 - 4)2 = 0, but we are still left with 1 move for array B. Increasing the second element of B to 5 using the left move, we get B = [8, 5] and E = (8 - 8)2 + (4 - 5)2 = 1.

【题目概述】

给你两个数字序列a,b,每个序列长度都为n,然后E=∑(a[i]-b[i])^2。现在你可以改变a,b序列中的元素k1次和k2次,每次可以使一个元素加一或者减一。使得改变结束之后E的值最小

【思路阐述】

每一次的操作都会使差值变化,+1或-1,目标是使差值离0越近越好,那么当存在有大于0的差值时,就让改差值减一,如果当所有差值为0的时,就让其中一个(就第一个)差值加一。

 #include<bits/stdc++.h>
using namespace std;
struct node{
int a;
int b;
int dif;
}num[]; bool cmp(node a,node b) {
return a.dif > b.dif;
} int main() {
int n,k1,k2;
while(~scanf("%d %d %d",&n,&k1,&k2)) {
for(int i = ; i < n; i++) scanf("%d",&num[i].a);
for(int i = ; i < n; i++) {
scanf("%d",&num[i].b);
num[i].dif = abs(num[i].a - num[i].b);
}
sort(num,num+n,cmp);
int op = k1 + k2;
int count = ;
for(int i = ; i < op; i++) {
if(num[].dif == ) num[].dif++;
else num[].dif--;
count++;
sort(num,num+n,cmp);
}
long long int ans = ;
for(int i = ; i < n; i++) {
ans += pow(num[i].dif,);
} cout<<ans<<endl;
}
return ;
}

Minimize the error CodeForces - 960B的更多相关文章

  1. 【codeforces】【比赛题解】#960 CF Round #474 (Div. 1 + Div. 2, combined)

    终于打了一场CF,不知道为什么我会去打00:05的CF比赛…… 不管怎么样,这次打的很好!拿到了Div. 2选手中的第一名,成功上紫! 以后还要再接再厉! [A]Check the string 题意 ...

  2. 19 Error handling and Go go语言错误处理

    Error handling and Go go语言错误处理 12 July 2011 Introduction If you have written any Go code you have pr ...

  3. # ML学习小笔记—Where does the error come from?

    关于本课程的相关资料http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17.html 错误来自哪里? error due to "bias" ...

  4. 李宏毅机器学习课程---3、Where does the error come from

    李宏毅机器学习课程---3.Where does the error come from 一.总结 一句话总结:机器学习的模型中error的来源是什么 bias:比如打靶,你的瞄准点离准心的偏移 va ...

  5. (转) Summary of NIPS 2016

    转自:http://blog.evjang.com/2017/01/nips2016.html           Eric Jang Technology, A.I., Careers       ...

  6. Propagation of Visual Entity Properties Under Bandwidth Constraints

    1. Introduction The Saga of Ryzom is a persistent massively-multiplayer online game (MMORPG) release ...

  7. Deep Learning in a Nutshell: History and Training

    Deep Learning in a Nutshell: History and Training This series of blog posts aims to provide an intui ...

  8. (转)The AlphaGo Replication Wiki

    The AlphaGo Replication Wiki 摘自:https://github.com/Rochester-NRT/RocAlphaGo/wiki/01.-Home Contents : ...

  9. (转)The Road to TensorFlow

    Stephen Smith's Blog All things Sage 300… The Road to TensorFlow – Part 7: Finally Some Code leave a ...

随机推荐

  1. POJ-3259 Wormholes---SPFA判断有无负环

    题目链接: https://vjudge.net/problem/POJ-3259 题目大意: 农夫约翰在探索他的许多农场,发现了一些惊人的虫洞.虫洞是很奇特的,因为它是一个单向通道,可让你进入虫洞的 ...

  2. html的语法注意事项

    html的语法 1.html不区分大小写,但是编写网页的时候尽量使用小写 2.文档注释:<!-- 注释部分的内容 --> 3.空格键和回车键在网页中不会起到任何作用 4.注意缩进时保持严格 ...

  3. 多线程编程、java图形用户界面编程、Java I / O系统

    线程概述 进程:是一种 “自包容”的运行程序 线程是进程当中的一个概念,最小处理单位 THread类.Runnable接口.Object类 创建新执行线程有两种方法:1:一种方法是将类声明为Threa ...

  4. html5之一些通用属性

    dir属性:定义元素内容排序方式(rtl,ltr,auto)contentEditable属性:内容是否可编辑tabindex属性:按tab键激活元素 <!DOCTYPE html>< ...

  5. [LeetCode] Daily Temperatures 日常温度

    Given a list of daily temperatures, produce a list that, for each day in the input, tells you how ma ...

  6. Kylin系列之二:原理介绍

    Kylin系列之二:原理介绍 2018年4月15日 15:52 因何而生 Kylin和hive的区别 1. hive主要是离线分析平台,适用于已经有成熟的报表体系,每天只要定时运行即可. 2. Kyl ...

  7. [HNOI 2010]Bounce 弹飞绵羊

    Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置 ...

  8. [Wc2010]重建计划

    Description Input 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案, ...

  9. bzoj 3214: [Zjoi2013]丽洁体

    Description 平时的练习和考试中,我们经常会碰上这样的题:命题人给出一个例句,要我们类比着写句子.这种往往被称为仿 写的题,不单单出现在小学生的考试中,也有时会出现在中考中.许多同学都喜欢做 ...

  10. ●BZOJ 2434: [Noi2011]阿狸的打字机

    ●赘述题目 (题意就不赘述了) ●解法: ●我先想的一个比较暴力的方法(要TLE): (ac自动机)先求出last数组(参见刘汝佳的解释:last[j]:表示j节点沿着失配指针往回走时,遇到的下一个单 ...