Table of ContentsShow FramesNo Frames


Chapter 15 
Linux Data Structures


This appendix lists the major data structures that Linux uses and which are described in this book. They have been edited slightly to fit the paper.

block_dev_struct

block_dev_struct data structures are used to register block devices as available for use by the buffer cache. They are held together in the blk_dev vector.

struct blk_dev_struct {
void (*request_fn)(void);
struct request * current_request;
struct request plug;
struct tq_struct plug_tq;
};

buffer_head

The buffer_head data structure holds information about a block buffer in the buffer cache.

/* bh state bits */
#define BH_Uptodate 0 /* 1 if the buffer contains valid data */
#define BH_Dirty 1 /* 1 if the buffer is dirty */
#define BH_Lock 2 /* 1 if the buffer is locked */
#define BH_Req 3 /* 0 if the buffer has been invalidated */
#define BH_Touched 4 /* 1 if the buffer has been touched (aging) */
#define BH_Has_aged 5 /* 1 if the buffer has been aged (aging) */
#define BH_Protected 6 /* 1 if the buffer is protected */
#define BH_FreeOnIO 7 /* 1 to discard the buffer_head after IO */ struct buffer_head {
/* First cache line: */
unsigned long b_blocknr; /* block number */
kdev_t b_dev; /* device (B_FREE = free) */
kdev_t b_rdev; /* Real device */
unsigned long b_rsector; /* Real buffer location on disk */
struct buffer_head *b_next; /* Hash queue list */
struct buffer_head *b_this_page; /* circular list of buffers in one
page */ /* Second cache line: */
unsigned long b_state; /* buffer state bitmap (above) */
struct buffer_head *b_next_free;
unsigned int b_count; /* users using this block */
unsigned long b_size; /* block size */ /* Non-performance-critical data follows. */
char *b_data; /* pointer to data block */
unsigned int b_list; /* List that this buffer appears */
unsigned long b_flushtime; /* Time when this (dirty) buffer
* should be written */
unsigned long b_lru_time; /* Time when this buffer was
* last used. */
struct wait_queue *b_wait;
struct buffer_head *b_prev; /* doubly linked hash list */
struct buffer_head *b_prev_free; /* doubly linked list of buffers */
struct buffer_head *b_reqnext; /* request queue */
};

device

Every network device in the system is represented by a device data structure.

struct device
{ /*
* This is the first field of the "visible" part of this structure
* (i.e. as seen by users in the "Space.c" file). It is the name
* the interface.
*/
char *name; /* I/O specific fields */
unsigned long rmem_end; /* shmem "recv" end */
unsigned long rmem_start; /* shmem "recv" start */
unsigned long mem_end; /* shared mem end */
unsigned long mem_start; /* shared mem start */
unsigned long base_addr; /* device I/O address */
unsigned char irq; /* device IRQ number */ /* Low-level status flags. */
volatile unsigned char start, /* start an operation */
interrupt; /* interrupt arrived */
unsigned long tbusy; /* transmitter busy */
struct device *next; /* The device initialization function. Called only once. */
int (*init)(struct device *dev); /* Some hardware also needs these fields, but they are not part of
the usual set specified in Space.c. */
unsigned char if_port; /* Selectable AUI,TP, */
unsigned char dma; /* DMA channel */ struct enet_statistics* (*get_stats)(struct device *dev); /*
* This marks the end of the "visible" part of the structure. All
* fields hereafter are internal to the system, and may change at
* will (read: may be cleaned up at will).
*/ /* These may be needed for future network-power-down code. */
unsigned long trans_start; /* Time (jiffies) of
last transmit */
unsigned long last_rx; /* Time of last Rx */
unsigned short flags; /* interface flags (BSD)*/
unsigned short family; /* address family ID */
unsigned short metric; /* routing metric */
unsigned short mtu; /* MTU value */
unsigned short type; /* hardware type */
unsigned short hard_header_len; /* hardware hdr len */
void *priv; /* private data */ /* Interface address info. */
unsigned char broadcast[MAX_ADDR_LEN];
unsigned char pad;
unsigned char dev_addr[MAX_ADDR_LEN];
unsigned char addr_len; /* hardware addr len */
unsigned long pa_addr; /* protocol address */
unsigned long pa_brdaddr; /* protocol broadcast addr*/
unsigned long pa_dstaddr; /* protocol P-P other addr*/
unsigned long pa_mask; /* protocol netmask */
unsigned short pa_alen; /* protocol address len */ struct dev_mc_list *mc_list; /* M'cast mac addrs */
int mc_count; /* No installed mcasts */ struct ip_mc_list *ip_mc_list; /* IP m'cast filter chain */
__u32 tx_queue_len; /* Max frames per queue */ /* For load balancing driver pair support */
unsigned long pkt_queue; /* Packets queued */
struct device *slave; /* Slave device */
struct net_alias_info *alias_info; /* main dev alias info */
struct net_alias *my_alias; /* alias devs */ /* Pointer to the interface buffers. */
struct sk_buff_head buffs[DEV_NUMBUFFS]; /* Pointers to interface service routines. */
int (*open)(struct device *dev);
int (*stop)(struct device *dev);
int (*hard_start_xmit) (struct sk_buff *skb,
struct device *dev);
int (*hard_header) (struct sk_buff *skb,
struct device *dev,
unsigned short type,
void *daddr,
void *saddr,
unsigned len);
int (*rebuild_header)(void *eth,
struct device *dev,
unsigned long raddr,
struct sk_buff *skb);
void (*set_multicast_list)(struct device *dev);
int (*set_mac_address)(struct device *dev,
void *addr);
int (*do_ioctl)(struct device *dev,
struct ifreq *ifr,
int cmd);
int (*set_config)(struct device *dev,
struct ifmap *map);
void (*header_cache_bind)(struct hh_cache **hhp,
struct device *dev,
unsigned short htype,
__u32 daddr);
void (*header_cache_update)(struct hh_cache *hh,
struct device *dev,
unsigned char * haddr);
int (*change_mtu)(struct device *dev,
int new_mtu);
struct iw_statistics* (*get_wireless_stats)(struct device *dev);
};

device_struct

device_struct data structures are used to register character and block devices (they hold its name and the set of file operations that can be used for this device). Each valid member of the chrdevs andblkdevs vectors represents a character or block device respectively.

struct device_struct {
const char * name;
struct file_operations * fops;
};

file

Each open file, socket etcetera is represented by a file data structure.

struct file {
mode_t f_mode;
loff_t f_pos;
unsigned short f_flags;
unsigned short f_count;
unsigned long f_reada, f_ramax, f_raend, f_ralen, f_rawin;
struct file *f_next, *f_prev;
int f_owner; /* pid or -pgrp where SIGIO should be sent */
struct inode * f_inode;
struct file_operations * f_op;
unsigned long f_version;
void *private_data; /* needed for tty driver, and maybe others */
};

files_struct

The files_struct data structure describes the files that a process has open.

struct files_struct {
int count;
fd_set close_on_exec;
fd_set open_fds;
struct file * fd[NR_OPEN];
};

fs_struct

struct fs_struct {
int count;
unsigned short umask;
struct inode * root, * pwd;
};

gendisk

The gendisk data structure holds information about a hard disk. They are used during initialization when the disks are found and then probed for partitions.

struct hd_struct {
long start_sect;
long nr_sects;
}; struct gendisk {
int major; /* major number of driver */
const char *major_name; /* name of major driver */
int minor_shift; /* number of times minor is shifted to
get real minor */
int max_p; /* maximum partitions per device */
int max_nr; /* maximum number of real devices */ void (*init)(struct gendisk *);
/* Initialization called before we
do our thing */
struct hd_struct *part; /* partition table */
int *sizes; /* device size in blocks, copied to
blk_size[] */
int nr_real; /* number of real devices */ void *real_devices; /* internal use */
struct gendisk *next;
};

inode

The VFS inode data structure holds information about a file or directory on disk.

struct inode {
kdev_t i_dev;
unsigned long i_ino;
umode_t i_mode;
nlink_t i_nlink;
uid_t i_uid;
gid_t i_gid;
kdev_t i_rdev;
off_t i_size;
time_t i_atime;
time_t i_mtime;
time_t i_ctime;
unsigned long i_blksize;
unsigned long i_blocks;
unsigned long i_version;
unsigned long i_nrpages;
struct semaphore i_sem;
struct inode_operations *i_op;
struct super_block *i_sb;
struct wait_queue *i_wait;
struct file_lock *i_flock;
struct vm_area_struct *i_mmap;
struct page *i_pages;
struct dquot *i_dquot[MAXQUOTAS];
struct inode *i_next, *i_prev;
struct inode *i_hash_next, *i_hash_prev;
struct inode *i_bound_to, *i_bound_by;
struct inode *i_mount;
unsigned short i_count;
unsigned short i_flags;
unsigned char i_lock;
unsigned char i_dirt;
unsigned char i_pipe;
unsigned char i_sock;
unsigned char i_seek;
unsigned char i_update;
unsigned short i_writecount;
union {
struct pipe_inode_info pipe_i;
struct minix_inode_info minix_i;
struct ext_inode_info ext_i;
struct ext2_inode_info ext2_i;
struct hpfs_inode_info hpfs_i;
struct msdos_inode_info msdos_i;
struct umsdos_inode_info umsdos_i;
struct iso_inode_info isofs_i;
struct nfs_inode_info nfs_i;
struct xiafs_inode_info xiafs_i;
struct sysv_inode_info sysv_i;
struct affs_inode_info affs_i;
struct ufs_inode_info ufs_i;
struct socket socket_i;
void *generic_ip;
} u;
};

ipc_perm

The ipc_perm data structure describes the access permissions of a System V IPC object .

struct ipc_perm
{
key_t key;
ushort uid; /* owner euid and egid */
ushort gid;
ushort cuid; /* creator euid and egid */
ushort cgid;
ushort mode; /* access modes see mode flags below */
ushort seq; /* sequence number */
};

irqaction

The irqaction data structure is used to describe the system's interrupt handlers.

struct irqaction {
void (*handler)(int, void *, struct pt_regs *);
unsigned long flags;
unsigned long mask;
const char *name;
void *dev_id;
struct irqaction *next;
};

linux_binfmt

Each binary file format that Linux understands is represented by a linux_binfmt data structure.

struct linux_binfmt {
struct linux_binfmt * next;
long *use_count;
int (*load_binary)(struct linux_binprm *, struct pt_regs * regs);
int (*load_shlib)(int fd);
int (*core_dump)(long signr, struct pt_regs * regs);
};

mem_map_t

The mem_map_t data structure (also known as page) is used to hold information about each page of physical memory.

typedef struct page {
/* these must be first (free area handling) */
struct page *next;
struct page *prev;
struct inode *inode;
unsigned long offset;
struct page *next_hash;
atomic_t count;
unsigned flags; /* atomic flags, some possibly
updated asynchronously */
unsigned dirty:16,
age:8;
struct wait_queue *wait;
struct page *prev_hash;
struct buffer_head *buffers;
unsigned long swap_unlock_entry;
unsigned long map_nr; /* page->map_nr == page - mem_map */
} mem_map_t;

mm_struct

The mm_struct data structure is used to describe the virtual memory of a task or process.

struct mm_struct {
int count;
pgd_t * pgd;
unsigned long context;
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack, start_mmap;
unsigned long arg_start, arg_end, env_start, env_end;
unsigned long rss, total_vm, locked_vm;
unsigned long def_flags;
struct vm_area_struct * mmap;
struct vm_area_struct * mmap_avl;
struct semaphore mmap_sem;
};

pci_bus

Every PCI bus in the system is represented by a pci_bus data structure.

struct pci_bus {
struct pci_bus *parent; /* parent bus this bridge is on */
struct pci_bus *children; /* chain of P2P bridges on this bus */
struct pci_bus *next; /* chain of all PCI buses */ struct pci_dev *self; /* bridge device as seen by parent */
struct pci_dev *devices; /* devices behind this bridge */ void *sysdata; /* hook for sys-specific extension */ unsigned char number; /* bus number */
unsigned char primary; /* number of primary bridge */
unsigned char secondary; /* number of secondary bridge */
unsigned char subordinate; /* max number of subordinate buses */
};

pci_dev

Every PCI device in the system, including PCI-PCI and PCI-ISA bridge devices is represented by a pci_dev data structure.

/*
* There is one pci_dev structure for each slot-number/function-number
* combination:
*/
struct pci_dev {
struct pci_bus *bus; /* bus this device is on */
struct pci_dev *sibling; /* next device on this bus */
struct pci_dev *next; /* chain of all devices */ void *sysdata; /* hook for sys-specific extension */ unsigned int devfn; /* encoded device & function index */
unsigned short vendor;
unsigned short device;
unsigned int class; /* 3 bytes: (base,sub,prog-if) */
unsigned int master : 1; /* set if device is master capable */
/*
* In theory, the irq level can be read from configuration
* space and all would be fine. However, old PCI chips don't
* support these registers and return 0 instead. For example,
* the Vision864-P rev 0 chip can uses INTA, but returns 0 in
* the interrupt line and pin registers. pci_init()
* initializes this field with the value at PCI_INTERRUPT_LINE
* and it is the job of pcibios_fixup() to change it if
* necessary. The field must not be 0 unless the device
* cannot generate interrupts at all.
*/
unsigned char irq; /* irq generated by this device */
};

request

request data structures are used to make requests to the block devices in the system. The requests are always to read or write blocks of data to or from the buffer cache.

struct request {
volatile int rq_status;
#define RQ_INACTIVE (-1)
#define RQ_ACTIVE 1
#define RQ_SCSI_BUSY 0xffff
#define RQ_SCSI_DONE 0xfffe
#define RQ_SCSI_DISCONNECTING 0xffe0 kdev_t rq_dev;
int cmd; /* READ or WRITE */
int errors;
unsigned long sector;
unsigned long nr_sectors;
unsigned long current_nr_sectors;
char * buffer;
struct semaphore * sem;
struct buffer_head * bh;
struct buffer_head * bhtail;
struct request * next;
};

rtable

Each rtable data structure holds information about the route to take in order to send packets to an IP host. rtable data structures are used within the IP route cache.

struct rtable
{
struct rtable *rt_next;
__u32 rt_dst;
__u32 rt_src;
__u32 rt_gateway;
atomic_t rt_refcnt;
atomic_t rt_use;
unsigned long rt_window;
atomic_t rt_lastuse;
struct hh_cache *rt_hh;
struct device *rt_dev;
unsigned short rt_flags;
unsigned short rt_mtu;
unsigned short rt_irtt;
unsigned char rt_tos;
};

semaphore

Semaphores are used to protect critical data structures and regions of code. y

struct semaphore {
int count;
int waking;
int lock ; /* to make waking testing atomic */
struct wait_queue *wait;
};

sk_buff

The sk_buff data structure is used to describe network data as it moves between the layers of protocol.

struct sk_buff
{
struct sk_buff *next; /* Next buffer in list */
struct sk_buff *prev; /* Previous buffer in list */
struct sk_buff_head *list; /* List we are on */
int magic_debug_cookie;
struct sk_buff *link3; /* Link for IP protocol level buffer chains */
struct sock *sk; /* Socket we are owned by */
unsigned long when; /* used to compute rtt's */
struct timeval stamp; /* Time we arrived */
struct device *dev; /* Device we arrived on/are leaving by */
union
{
struct tcphdr *th;
struct ethhdr *eth;
struct iphdr *iph;
struct udphdr *uh;
unsigned char *raw;
/* for passing file handles in a unix domain socket */
void *filp;
} h; union
{
/* As yet incomplete physical layer views */
unsigned char *raw;
struct ethhdr *ethernet;
} mac; struct iphdr *ip_hdr; /* For IPPROTO_RAW */
unsigned long len; /* Length of actual data */
unsigned long csum; /* Checksum */
__u32 saddr; /* IP source address */
__u32 daddr; /* IP target address */
__u32 raddr; /* IP next hop address */
__u32 seq; /* TCP sequence number */
__u32 end_seq; /* seq [+ fin] [+ syn] + datalen */
__u32 ack_seq; /* TCP ack sequence number */
unsigned char proto_priv[16];
volatile char acked, /* Are we acked ? */
used, /* Are we in use ? */
free, /* How to free this buffer */
arp; /* Has IP/ARP resolution finished */
unsigned char tries, /* Times tried */
lock, /* Are we locked ? */
localroute, /* Local routing asserted for this frame */
pkt_type, /* Packet class */
pkt_bridged, /* Tracker for bridging */
ip_summed; /* Driver fed us an IP checksum */
#define PACKET_HOST 0 /* To us */
#define PACKET_BROADCAST 1 /* To all */
#define PACKET_MULTICAST 2 /* To group */
#define PACKET_OTHERHOST 3 /* To someone else */
unsigned short users; /* User count - see datagram.c,tcp.c */
unsigned short protocol; /* Packet protocol from driver. */
unsigned int truesize; /* Buffer size */
atomic_t count; /* reference count */
struct sk_buff *data_skb; /* Link to the actual data skb */
unsigned char *head; /* Head of buffer */
unsigned char *data; /* Data head pointer */
unsigned char *tail; /* Tail pointer */
unsigned char *end; /* End pointer */
void (*destructor)(struct sk_buff *); /* Destruct function */
__u16 redirport; /* Redirect port */
};

sock

Each sock data structure holds protocol specific information about a BSD socket. For example, for an INET (Internet Address Domain) socket this data structure would hold all of the TCP/IP and UDP/IP specific information.

struct sock
{
/* This must be first. */
struct sock *sklist_next;
struct sock *sklist_prev; struct options *opt;
atomic_t wmem_alloc;
atomic_t rmem_alloc;
unsigned long allocation; /* Allocation mode */
__u32 write_seq;
__u32 sent_seq;
__u32 acked_seq;
__u32 copied_seq;
__u32 rcv_ack_seq;
unsigned short rcv_ack_cnt; /* count of same ack */
__u32 window_seq;
__u32 fin_seq;
__u32 urg_seq;
__u32 urg_data;
__u32 syn_seq;
int users; /* user count */
/*
* Not all are volatile, but some are, so we
* might as well say they all are.
*/
volatile char dead,
urginline,
intr,
blog,
done,
reuse,
keepopen,
linger,
delay_acks,
destroy,
ack_timed,
no_check,
zapped,
broadcast,
nonagle,
bsdism;
unsigned long lingertime;
int proc; struct sock *next;
struct sock **pprev;
struct sock *bind_next;
struct sock **bind_pprev;
struct sock *pair;
int hashent;
struct sock *prev;
struct sk_buff *volatile send_head;
struct sk_buff *volatile send_next;
struct sk_buff *volatile send_tail;
struct sk_buff_head back_log;
struct sk_buff *partial;
struct timer_list partial_timer;
long retransmits;
struct sk_buff_head write_queue,
receive_queue;
struct proto *prot;
struct wait_queue **sleep;
__u32 daddr;
__u32 saddr; /* Sending source */
__u32 rcv_saddr; /* Bound address */
unsigned short max_unacked;
unsigned short window;
__u32 lastwin_seq; /* sequence number when we last
updated the window we offer */
__u32 high_seq; /* sequence number when we did
current fast retransmit */
volatile unsigned long ato; /* ack timeout */
volatile unsigned long lrcvtime; /* jiffies at last data rcv */
volatile unsigned long idletime; /* jiffies at last rcv */
unsigned int bytes_rcv;
/*
* mss is min(mtu, max_window)
*/
unsigned short mtu; /* mss negotiated in the syn's */
volatile unsigned short mss; /* current eff. mss - can change */
volatile unsigned short user_mss; /* mss requested by user in ioctl */
volatile unsigned short max_window;
unsigned long window_clamp;
unsigned int ssthresh;
unsigned short num;
volatile unsigned short cong_window;
volatile unsigned short cong_count;
volatile unsigned short packets_out;
volatile unsigned short shutdown;
volatile unsigned long rtt;
volatile unsigned long mdev;
volatile unsigned long rto; volatile unsigned short backoff;
int err, err_soft; /* Soft holds errors that don't
cause failure but are the cause
of a persistent failure not
just 'timed out' */
unsigned char protocol;
volatile unsigned char state;
unsigned char ack_backlog;
unsigned char max_ack_backlog;
unsigned char priority;
unsigned char debug;
int rcvbuf;
int sndbuf;
unsigned short type;
unsigned char localroute; /* Route locally only */
/*
* This is where all the private (optional) areas that don't
* overlap will eventually live.
*/
union
{
struct unix_opt af_unix;
#if defined(CONFIG_ATALK) || defined(CONFIG_ATALK_MODULE)
struct atalk_sock af_at;
#endif
#if defined(CONFIG_IPX) || defined(CONFIG_IPX_MODULE)
struct ipx_opt af_ipx;
#endif
#ifdef CONFIG_INET
struct inet_packet_opt af_packet;
#ifdef CONFIG_NUTCP
struct tcp_opt af_tcp;
#endif
#endif
} protinfo;
/*
* IP 'private area'
*/
int ip_ttl; /* TTL setting */
int ip_tos; /* TOS */
struct tcphdr dummy_th;
struct timer_list keepalive_timer; /* TCP keepalive hack */
struct timer_list retransmit_timer; /* TCP retransmit timer */
struct timer_list delack_timer; /* TCP delayed ack timer */
int ip_xmit_timeout; /* Why the timeout is running */
struct rtable *ip_route_cache; /* Cached output route */
unsigned char ip_hdrincl; /* Include headers ? */
#ifdef CONFIG_IP_MULTICAST
int ip_mc_ttl; /* Multicasting TTL */
int ip_mc_loop; /* Loopback */
char ip_mc_name[MAX_ADDR_LEN]; /* Multicast device name */
struct ip_mc_socklist *ip_mc_list; /* Group array */
#endif /*
* This part is used for the timeout functions (timer.c).
*/
int timeout; /* What are we waiting for? */
struct timer_list timer; /* This is the TIME_WAIT/receive
* timer when we are doing IP
*/
struct timeval stamp;
/*
* Identd
*/
struct socket *socket;
/*
* Callbacks
*/
void (*state_change)(struct sock *sk);
void (*data_ready)(struct sock *sk,int bytes);
void (*write_space)(struct sock *sk);
void (*error_report)(struct sock *sk); };

socket

Each socket data structure holds information about a BSD socket. It does not exist independently; it is, instead, part of the VFS inode data structure.

struct socket {
short type; /* SOCK_STREAM, ... */
socket_state state;
long flags;
struct proto_ops *ops; /* protocols do most everything */
void *data; /* protocol data */
struct socket *conn; /* server socket connected to */
struct socket *iconn; /* incomplete client conn.s */
struct socket *next;
struct wait_queue **wait; /* ptr to place to wait on */
struct inode *inode;
struct fasync_struct *fasync_list; /* Asynchronous wake up list */
struct file *file; /* File back pointer for gc */
};

task_struct

Each task_struct data structure describes a process or task in the system.

struct task_struct {
/* these are hardcoded - don't touch */
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
long counter;
long priority;
unsigned long signal;
unsigned long blocked; /* bitmap of masked signals */
unsigned long flags; /* per process flags, defined below */
int errno;
long debugreg[8]; /* Hardware debugging registers */
struct exec_domain *exec_domain;
/* various fields */
struct linux_binfmt *binfmt;
struct task_struct *next_task, *prev_task;
struct task_struct *next_run, *prev_run;
unsigned long saved_kernel_stack;
unsigned long kernel_stack_page;
int exit_code, exit_signal;
/* ??? */
unsigned long personality;
int dumpable:1;
int did_exec:1;
int pid;
int pgrp;
int tty_old_pgrp;
int session;
/* boolean value for session group leader */
int leader;
int groups[NGROUPS];
/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->p_pptr->pid)
*/
struct task_struct *p_opptr, *p_pptr, *p_cptr,
*p_ysptr, *p_osptr;
struct wait_queue *wait_chldexit;
unsigned short uid,euid,suid,fsuid;
unsigned short gid,egid,sgid,fsgid;
unsigned long timeout, policy, rt_priority;
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;
long utime, stime, cutime, cstime, start_time;
/* mm fault and swap info: this can arguably be seen as either
mm-specific or thread-specific */
unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
int swappable:1;
unsigned long swap_address;
unsigned long old_maj_flt; /* old value of maj_flt */
unsigned long dec_flt; /* page fault count of the last time */
unsigned long swap_cnt; /* number of pages to swap on next pass */
/* limits */
struct rlimit rlim[RLIM_NLIMITS];
unsigned short used_math;
char comm[16];
/* file system info */
int link_count;
struct tty_struct *tty; /* NULL if no tty */
/* ipc stuff */
struct sem_undo *semundo;
struct sem_queue *semsleeping;
/* ldt for this task - used by Wine. If NULL, default_ldt is used */
struct desc_struct *ldt;
/* tss for this task */
struct thread_struct tss;
/* filesystem information */
struct fs_struct *fs;
/* open file information */
struct files_struct *files;
/* memory management info */
struct mm_struct *mm;
/* signal handlers */
struct signal_struct *sig;
#ifdef __SMP__
int processor;
int last_processor;
int lock_depth; /* Lock depth.
We can context switch in and out
of holding a syscall kernel lock... */
#endif
};

timer_list

timer_list data structure's are used to implement real time timers for processes.

struct timer_list {
struct timer_list *next;
struct timer_list *prev;
unsigned long expires;
unsigned long data;
void (*function)(unsigned long);
};

tq_struct

Each task queue (tq_struct) data structure holds information about work that has been queued. This is usually a task needed by a device driver but which does not have to be done immediately.

struct tq_struct {
struct tq_struct *next; /* linked list of active bh's */
int sync; /* must be initialized to zero */
void (*routine)(void *); /* function to call */
void *data; /* argument to function */
};

vm_area_struct

Each vm_area_struct data structure describes an area of virtual memory for a process.

struct vm_area_struct {
struct mm_struct * vm_mm; /* VM area parameters */
unsigned long vm_start;
unsigned long vm_end;
pgprot_t vm_page_prot;
unsigned short vm_flags;
/* AVL tree of VM areas per task, sorted by address */
short vm_avl_height;
struct vm_area_struct * vm_avl_left;
struct vm_area_struct * vm_avl_right;
/* linked list of VM areas per task, sorted by address */
struct vm_area_struct * vm_next;
/* for areas with inode, the circular list inode->i_mmap */
/* for shm areas, the circular list of attaches */
/* otherwise unused */
struct vm_area_struct * vm_next_share;
struct vm_area_struct * vm_prev_share;
/* more */
struct vm_operations_struct * vm_ops;
unsigned long vm_offset;
struct inode * vm_inode;
unsigned long vm_pte; /* shared mem */
};

File translated from TEX by TTH, version 1.0.


Top of ChapterTable of ContentsShow FramesNo Frames
© 1996-1999 David A Rusling copyright notice.

[轉]Linux Data Structures的更多相关文章

  1. Basic Data Structures and Algorithms in the Linux Kernel--reference

    http://luisbg.blogalia.com/historias/74062 Thanks to Vijay D'Silva's brilliant answer in cstheory.st ...

  2. 转载--linux filesystem structures

    In this article, let us review the Linux filesystem structures and understand the meaning of individ ...

  3. A library of generic data structures

    A library of generic data structures including a list, array, hashtable, deque etc.. https://github. ...

  4. The Swiss Army Knife of Data Structures … in C#

    "I worked up a full implementation as well but I decided that it was too complicated to post in ...

  5. 剪短的python数据结构和算法的书《Data Structures and Algorithms Using Python》

    按书上练习完,就可以知道日常的用处啦 #!/usr/bin/env python # -*- coding: utf-8 -*- # learn <<Problem Solving wit ...

  6. Persistent Data Structures

    原文链接:http://www.codeproject.com/Articles/9680/Persistent-Data-Structures Introduction When you hear ...

  7. Go Data Structures: Interfaces

    refer:http://research.swtch.com/interfaces Go Data Structures: Interfaces Posted on Tuesday, Decembe ...

  8. Choose Concurrency-Friendly Data Structures

    What is a high-performance data structure? To answer that question, we're used to applying normal co ...

  9. 无锁数据结构(Lock-Free Data Structures)

    一个星期前,我写了关于SQL Server里闩锁(Latches)和自旋锁(Spinlocks)的文章.2个同步原语(synchronization primitives)是用来保护SQL Serve ...

随机推荐

  1. SpringBoot连接Oracle

    pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="htt ...

  2. Python做个小游戏

    Ps.可去知乎搜索“雨露浅歌”大神,他写的帖子里有详细讲解和源码. 游戏概述.玩法:通过键盘的↑键来控制小球往上走,当松开↑键时,小球以一定速度向下掉,小球每越过一根棒加1000分,越过一个飞镖加20 ...

  3. (十二)Bind读取配置到C#实例

    继续上一节的,接下来用Options或者Bind把json文件里的配置转成C#的实体,相互之间映射起来.首先新建一个asp.net core mvc项目OptionsBindSample Startu ...

  4. js中的相等与逗号运算符用法

    /** * 相等运算符 '==',相等则返回true,不等则返回false * - 用 '==' 来比较两个值时,若值的类型不同,则会自动进行类型 * 转换,将其转换为相同的类型然后再进行比较. */ ...

  5. oracle10G锁查询、批量杀锁及常用sql

    前言 记录1.oracle10G锁查杀技巧 2.资源检查方面的sql 锁查杀 找出所有被锁的对象.注意:不一定是死锁,大部分应该是阻塞,如果发现大量的锁对象,一定要检查程序逻辑了,优化sql sele ...

  6. css实现下拉框导航条

    html <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <ti ...

  7. InnoDB索引存储结构

    原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11429438.html InnoDB默认创建的主键索引是聚簇索引(Clustered Index),其 ...

  8. FZU 2150 Fire Game (高姿势bfs--两个起点)

    Description Fat brother and Maze are playing a kind of special (hentai) game on an N*M board (N rows ...

  9. SQL中LEFT JOIN ON AND 与 LEFT JOIN ON WHERE的区别

    数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户. ON...WHERE ' order by ts.id SQL执行过程: 生成临时表: ON条件:  ...

  10. Drbd+Heatbeat实现NFS共享文件存储高可用

    一.Drbd与Heartbeat简介 1.1   Drbd简介: Drbd是由内核模块和相关脚本而构成,用以构建高可用性的集群.其实现方式是通过网络来镜像整个设备.它允许用户在远程机器上建立一个本地块 ...