SSD算法,其英文全名是Single Shot MultiBox Detector。

SSD的网络结构流程如下图所示
SSD总共11个block,相比较于之前的VGG16,改变了第5个block的第4层,第6、7、8卷积层全部去掉,分别增加了红框、黑框、黄框、蓝框。

其tensorflow代码如下:

    with tf.variable_scope(scope, 'ssd_300_vgg', [inputs], reuse=reuse):
# Original VGG-16 blocks.
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
end_points['block1'] = net
net = slim.max_pool2d(net, [2, 2], scope='pool1')
# Block 2.
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
end_points['block2'] = net
net = slim.max_pool2d(net, [2, 2], scope='pool2')
# Block 3.
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
end_points['block3'] = net
net = slim.max_pool2d(net, [2, 2], scope='pool3')
# Block 4.
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
end_points['block4'] = net
net = slim.max_pool2d(net, [2, 2], scope='pool4')
# Block 5.
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
end_points['block5'] = net
#注意处
net = slim.max_pool2d(net, [3, 3], stride=1, scope='pool5') # Additional SSD blocks.
# Block 6: let's dilate the hell out of it!
#注意处
net = slim.conv2d(net, 1024, [3, 3], rate=6, scope='conv6')
end_points['block6'] = net
net = tf.layers.dropout(net, rate=dropout_keep_prob, training=is_training)
# Block 7: 1x1 conv. Because the fuck.
#注意处
net = slim.conv2d(net, 1024, [1, 1], scope='conv7')
end_points['block7'] = net
net = tf.layers.dropout(net, rate=dropout_keep_prob, training=is_training) # Block 8/9/10/11: 1x1 and 3x3 convolutions stride 2 (except lasts).
end_point = 'block8'
with tf.variable_scope(end_point):
net = slim.conv2d(net, 256, [1, 1], scope='conv1x1')
#注意点:实际上相当于下面的卷积操作进行padding了
net = custom_layers.pad2d(net, pad=(1, 1))
net = slim.conv2d(net, 512, [3, 3], stride=2, scope='conv3x3', padding='VALID')
end_points[end_point] = net
end_point = 'block9'
with tf.variable_scope(end_point):
net = slim.conv2d(net, 128, [1, 1], scope='conv1x1')
#注意点:实际上相当于下面的卷积操作进行padding了
net = custom_layers.pad2d(net, pad=(1, 1))
net = slim.conv2d(net, 256, [3, 3], stride=2, scope='conv3x3', padding='VALID')
end_points[end_point] = net
end_point = 'block10'
with tf.variable_scope(end_point):
net = slim.conv2d(net, 128, [1, 1], scope='conv1x1')
net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID')
end_points[end_point] = net
end_point = 'block11'
with tf.variable_scope(end_point):
net = slim.conv2d(net, 128, [1, 1], scope='conv1x1')
net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID')
end_points[end_point] = net

设计理念

参考博客:

目标检测算法之SSD

彻底搞懂SSD网络结构

SSD网络结构的更多相关文章

  1. SSD(single shot multibox detector)

    SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法,截至目前是主要的检测框架之一,相比Faster RCNN有明显的速 ...

  2. AI佳作解读系列(二)——目标检测AI算法集杂谈:R-CNN,faster R-CNN,yolo,SSD,yoloV2,yoloV3

    1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...

  3. 论文笔记 SSD: Single Shot MultiBox Detector

    转载自:https://zhuanlan.zhihu.com/p/33544892 前言 目标检测近年来已经取得了很重要的进展,主流的算法主要分为两个类型(参考RefineDet):(1)two-st ...

  4. [目标检测]SSD原理

    1 SSD基础原理 1.1 SSD网络结构 SSD使用VGG-16-Atrous作为基础网络,其中黄色部分为在VGG-16基础网络上填加的特征提取层.SSD与yolo不同之处是除了在最终特征图上做目标 ...

  5. 转:SSD详解

    原文:http://blog.csdn.net/a8039974/article/details/77592395, http://blog.csdn.net/jesse_mx/article/det ...

  6. ssd原理及代码实现详解

    通过https://github.com/amdegroot/ssd.pytorch,结合论文https://arxiv.org/abs/1512.02325来理解ssd. ssd由三部分组成: ba ...

  7. 【目标检测】SSD:

    slides 讲得是相当清楚了: http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf 配合中文翻译来看: https://www.cnb ...

  8. 检测算法简介及其原理——fast R-CNN,faster R-CNN,YOLO,SSD,YOLOv2,YOLOv3

    1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物 ...

  9. 五、SSD原理(Single Shot MultiBox Detector)

    主流的算法主要分为两个类型: (1)tow-stage R-CNN系列算法,其主要思路是先通过启发式方法(selective search)或者CNN网络(RPN)产生一些列稀疏的候选框,然后对这些候 ...

随机推荐

  1. JavaScript值传递和引用传递

    1、数据类型:boolean,null,undefined,String,Number,指向包含的数据,进行“值传递”: 2.非数据类型:Array,Function,Object,指向了一个内存地址 ...

  2. vue框架中什么是MVVM

    前端页面中使用MVVM的思想,即MVVM是整个视图层view的概念,属于视图层的概念. MVVM是前端视图层的分层开发思想,将页面分成了Model, View,和VM:其中VM是核心,因为VM是V和M ...

  3. python_suit

    全局变量 Json:双引号       Suite :ddt中不能用 suit.add(test),应该用 suit.add(loader)

  4. centos7 iperf3安装

    iperf3快速安装 wget -O /usr/lib/libiperf.so.0 https://iperf.fr/download/ubuntu/libiperf.so.0_3.1.3 wget ...

  5. 学习selenium grid记录

    1.找两台Windows系统,一个是A,作为Hub:一个是B,作为Node: 2.在A.B两台电脑分别下载selenium-server-standalone-2.48.0.jar,并放到指定目录 3 ...

  6. matplotlib不显示图片

    import matplotlib.pyplot as plt 绘制好图像之后,需要使用plt.show()才会显示出图片.

  7. 【leetcode】907. Sum of Subarray Minimums

    题目如下: 解题思路:我的想法对于数组中任意一个元素,找出其左右两边最近的小于自己的元素.例如[1,3,2,4,5,1],元素2左边比自己小的元素是1,那么大于自己的区间就是[3],右边的区间就是[4 ...

  8. SpringDataJpa全部依赖

    <properties> <spring.version>4.2.4.RELEASE</spring.version> <hibernate.version& ...

  9. MariaDB 删除表

    在本章中,我们将学习删除表. 表删除很容易,但记住所有删除的表是不可恢复的. 表删除的一般语法如下 - DROP TABLE table_name ; 存在执行表删除的两个选项:使用命令提示符或PHP ...

  10. 【Zookeekper】分布锁Curator

    有序节点:假如当前有一个父节点为/lock,我们可以在这个父节点下面创建子节点:zookeeper提供了一个可选的有序特性,例如我们可以创建子节点“/lock/node-”并且指明有序,那么zooke ...