模板 - 可持久化无旋Treap
空间消耗非常玄学,有多大开多大就完事了。其实是因为单次操作可能会有数次Merge和Split操作,按照下面的版本的话Merge和Split都进行复制,所以一次操作可能复制了4个版本。
四个函数式查询,然后Merge的时候拷贝对应的xy子树,Split的时候拷贝p树。事实上,Merge和Split总是成对出现,只需要在其中喜欢的一个进行可持久化(复制节点)就可以了,比较推荐在Split的时候复制节点。这样单次操作大概复制2个版本。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define ls(p) ch[p][0]
#define rs(p) ch[p][1]
const int MAXN = 30000000 + 5;
int val[MAXN], ch[MAXN][2], rnd[MAXN], siz[MAXN], tot, root[MAXN];
void Init() {
tot = 0;
memset(root,0,sizeof(root));
}
int NewNode(int v) {
++tot;
ch[tot][0] = ch[tot][1] = 0;
val[tot] = v, rnd[tot] = rand();
siz[tot] = 1;
return tot;
}
int CopyNode(int p) {
++tot;
ch[tot][0] = ch[p][0];
ch[tot][1] = ch[p][1];
val[tot] = val[p];
rnd[tot] = rnd[p];
siz[tot] = siz[p];
return tot;
}
void PushUp(int p) {
siz[p] = siz[ls(p)] + siz[rs(p)] + 1;
}
void SplitValue(int p, int v, int &x, int &y) {
if(!p) {
x = y = 0;
return;
}
if(v < val[p]) {
y = CopyNode(p);
SplitValue(ls(y), v, x, ls(y));
PushUp(y);
} else {
x = CopyNode(p);
SplitValue(rs(x), v, rs(x), y);
PushUp(x);
}
}
/*void SplitRank(int p, int rk, int &x, int &y) {
if(!p) {
x = y = 0;
return;
}
if(rk <= siz[ls(p)]) {
y = p;
SplitRank(ls(p), rk, x, ls(p));
PushUp(y);
} else {
x = p;
SplitRank(rs(p), rk - siz[ls(p)] - 1, rs(p), y);
PushUp(x);
}
}*/
int Merge(int x, int y) {
if(!x || !y)
return x | y;
if(rnd[x] < rnd[y]) {
int p = CopyNode(x);
rs(p) = Merge(rs(p), y);
PushUp(p);
return p;
} else {
int p = CopyNode(y);
ls(p) = Merge(x, ls(p));
PushUp(p);
return p;
}
}
void Insert(int &root, int v) {
int x = 0, y = 0;
SplitValue(root, v, x, y);
root = Merge(Merge(x, NewNode(v)), y);
}
void Remove(int &root, int v) {
int x = 0, y = 0, z = 0;
SplitValue(root, v, x, z);
SplitValue(x, v - 1, x, y);
y = Merge(ls(y), rs(y));
root = Merge(Merge(x, y), z);
}
int GetRank2(int p, int v) {
int rk = 1;
while(p) {
if(v < val[p])
p = ls(p);
else if(v == val[p])
p = ls(p);
else {
rk += siz[ls(p)] + 1;
p = rs(p);
}
}
return rk;
}
int GetValue2(int p, int rk) {
while(p) {
if(rk <= siz[ls(p)])
p = ls(p);
else if(rk == siz[ls(p)] + 1)
return val[p];
else {
rk -= siz[ls(p)] + 1;
p = rs(p);
}
}
}
int GetPrev2(int p, int v) {
int prev;
while(p) {
if(v <= val[p])
p = ls(p);
else {
prev = val[p];
p = rs(p);
}
}
return prev;
}
int GetNext2(int p, int v) {
int next;
while(p) {
if(v < val[p]) {
next = val[p];
p = ls(p);
} else
p = rs(p);
}
return next;
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int n;
scanf("%d", &n);
Init();
for(int i = 1; i <= n; ++i) {
int v,op, x;
scanf("%d%d%d",&v, &op, &x);
root[i]=root[v];
switch(op) {
case 1:
Insert(root[i], x);
break;
case 2:
Remove(root[i], x);
break;
case 3:
printf("%d\n", GetRank2(root[i], x));
break;
case 4:
printf("%d\n", GetValue2(root[i], x));
break;
case 5:
printf("%d\n", GetPrev2(root[i], x));
break;
case 6:
printf("%d\n", GetNext2(root[i], x));
break;
}
}
return 0;
}
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define ls(p) ch[p][0]
#define rs(p) ch[p][1]
const int MAXN = 20000000 + 5;
int val[MAXN], ch[MAXN][2], rnd[MAXN], siz[MAXN], tot, root[MAXN];
void Init() {
tot = 0;
memset(root,0,sizeof(root));
}
int NewNode(int v) {
++tot;
ch[tot][0] = ch[tot][1] = 0;
val[tot] = v, rnd[tot] = rand();
siz[tot] = 1;
return tot;
}
int CopyNode(int p) {
++tot;
ch[tot][0] = ch[p][0];
ch[tot][1] = ch[p][1];
val[tot] = val[p];
rnd[tot] = rnd[p];
siz[tot] = siz[p];
return tot;
}
void PushUp(int p) {
siz[p] = siz[ls(p)] + siz[rs(p)] + 1;
}
void SplitValue(int p, int v, int &x, int &y) {
if(!p) {
x = y = 0;
return;
}
if(v < val[p]) {
y = CopyNode(p);
SplitValue(ls(y), v, x, ls(y));
PushUp(y);
} else {
x = CopyNode(p);
SplitValue(rs(x), v, rs(x), y);
PushUp(x);
}
}
/*void SplitRank(int p, int rk, int &x, int &y) {
if(!p) {
x = y = 0;
return;
}
if(rk <= siz[ls(p)]) {
y = p;
SplitRank(ls(p), rk, x, ls(p));
PushUp(y);
} else {
x = p;
SplitRank(rs(p), rk - siz[ls(p)] - 1, rs(p), y);
PushUp(x);
}
}*/
int Merge(int x, int y) {
if(!x || !y)
return x | y;
if(rnd[x] < rnd[y]) {
//int p = CopyNode(x);
int p=x;
rs(p) = Merge(rs(p), y);
PushUp(p);
return p;
} else {
int p=y;
//int p = CopyNode(y);
ls(p) = Merge(x, ls(p));
PushUp(p);
return p;
}
}
void Insert(int &root, int v) {
int x = 0, y = 0;
SplitValue(root, v, x, y);
root = Merge(Merge(x, NewNode(v)), y);
}
void Remove(int &root, int v) {
int x = 0, y = 0, z = 0;
SplitValue(root, v, x, z);
SplitValue(x, v - 1, x, y);
y = Merge(ls(y), rs(y));
root = Merge(Merge(x, y), z);
}
int GetRank2(int p, int v) {
int rk = 1;
while(p) {
if(v < val[p])
p = ls(p);
else if(v == val[p])
p = ls(p);
else {
rk += siz[ls(p)] + 1;
p = rs(p);
}
}
return rk;
}
int GetValue2(int p, int rk) {
while(p) {
if(rk <= siz[ls(p)])
p = ls(p);
else if(rk == siz[ls(p)] + 1)
return val[p];
else {
rk -= siz[ls(p)] + 1;
p = rs(p);
}
}
}
int GetPrev2(int p, int v) {
int prev;
while(p) {
if(v <= val[p])
p = ls(p);
else {
prev = val[p];
p = rs(p);
}
}
return prev;
}
int GetNext2(int p, int v) {
int next;
while(p) {
if(v < val[p]) {
next = val[p];
p = ls(p);
} else
p = rs(p);
}
return next;
}
int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
int n;
scanf("%d", &n);
Init();
for(int i = 1; i <= n; ++i) {
int v,op, x;
scanf("%d%d%d",&v, &op, &x);
root[i]=root[v];
switch(op) {
case 1:
Insert(root[i], x);
break;
case 2:
Remove(root[i], x);
break;
case 3:
printf("%d\n", GetRank2(root[i], x));
break;
case 4:
printf("%d\n", GetValue2(root[i], x));
break;
case 5:
printf("%d\n", GetPrev2(root[i], x));
break;
case 6:
printf("%d\n", GetNext2(root[i], x));
break;
}
}
return 0;
}
模板 - 可持久化无旋Treap的更多相关文章
- 模板 - 数据结构 - 可持久化无旋Treap/PersistentFHQTreap
有可能当树中有键值相同的节点时,貌似是要对Split和Merge均进行复制的,本人实测:只在Split的时候复制得到了一个WA,但只在Merge的时候复制还是AC,可能是恰好又躲过去了.有人说假如确保 ...
- 无旋Treap - BZOJ1014火星人 & 可持久化版文艺平衡树
!前置技能&概念! 二叉搜索树 一棵二叉树,对于任意子树,满足左子树中的任意节点对应元素小于根的对应元素,右子树中的任意节点对应元素大于根对应元素.换言之,就是满足中序遍历为依次访问节点对应元 ...
- 无旋treap的简单思想以及模板
因为学了treap,不想弃坑去学splay,终于理解了无旋treap... 好像普通treap没卵用...(再次大雾) 简单说一下思想免得以后忘记.普通treap因为带旋转操作似乎没卵用,而无旋tre ...
- 模板 - 无旋Treap
一般而言作为一棵平衡树只需要插入,删除,值求排名,排名求值,前驱,后继,六个接口. #include<bits/stdc++.h> using namespace std; typedef ...
- 洛谷 - P3391 【模板】文艺平衡树(Splay) - 无旋Treap
https://www.luogu.org/problem/P3391 使用无旋Treap维护序列,注意的是按顺序插入的序列,所以Insert实际上简化成直接root和Merge合并,但是假如要在序列 ...
- 浅谈无旋treap(fhq_treap)
一.简介 无旋Treap(fhq_treap),是一种不用旋转的treap,其代码复杂度不高,应用范围广(能代替普通treap和splay的所有功能),是一种极其强大的平衡树. 无旋Treap是一个叫 ...
- [转载]无旋treap:从好奇到入门(例题:bzoj3224 普通平衡树)
转载自ZZH大佬,原文:http://www.cnblogs.com/LadyLex/p/7182491.html 今天我们来学习一种新的数据结构:无旋treap.它和splay一样支持区间操作,和t ...
- [您有新的未分配科技点]无旋treap:从好奇到入门(例题:bzoj3224 普通平衡树)
今天我们来学习一种新的数据结构:无旋treap.它和splay一样支持区间操作,和treap一样简单易懂,同时还支持可持久化. 无旋treap的节点定义和treap一样,都要同时满足树性质和堆性质,我 ...
- 【算法学习】Fhq-Treap(无旋Treap)
Treap——大名鼎鼎的随机二叉查找树,以优异的性能和简单的实现在OIer们中广泛流传. 这篇blog介绍一种不需要旋转操作来维护的Treap,即无旋Treap,也称Fhq-Treap. 它的巧妙之处 ...
随机推荐
- classloader加载class的流程及自定义ClassLoader
java应用环境中不同的class分别由不同的ClassLoader负责加载.一个jvm中默认的classloader有Bootstrap ClassLoader.Extension ClassLoa ...
- HTML5基础内容(二)
HTML(HyperText Markup Language)超文本标记语言 一.HTML注释 元素就是标签,标签就是元素. 注释中的内容不会在页面中显示,但是可以在源码中看到. 可以通过编写注释来对 ...
- 3,ActiveMQ-入门(基于JMS发布订阅模型)
一.Pub/Sub-发布/订阅消息传递模型 在发布/订阅消息模型中,发布者发布一个消息,该消息通过topic传递给所有的客户端.在这种模型中,发布者和订阅者彼此不知道对方,是匿名的且可以动态发布和订阅 ...
- mysql PRIMARY KEY约束 语法
mysql PRIMARY KEY约束 语法 作用:PRIMARY KEY 约束唯一标识数据库表中的每条记录. 环形直线电机 说明:主键必须包含唯一的值.主键列不能包含 NULL 值.每个表都应该有一 ...
- ELK整合Filebeat监控nginx日志
ELK 日志分析 1. 为什么用到 ELK 一般我们需要进行日志分析场景:直接在日志文件中 grep. awk 就可以获得自己想要的信息.但在规模较大的场景中,此方法效率低下,面临问题包括日志量太大如 ...
- Go简易分布式对象存储 合并文件的所有分块为一个文件
项目 项目地址: https://github.com/Draymonders/cloud 欢迎大家Watch or Star 缘由 由于项目中对大文件进行5MB为一个分块上传(多线程,提升上传效率) ...
- sh_05_超市买苹果
sh_05_超市买苹果 # 1. 定义苹果的单价 price = 8.5 # 2. 挑选苹果 weight = 7.5 # 3. 计算付款金额 money = weight * price # 4. ...
- customizable route planning 工业界地图产品的路径规划
https://www.microsoft.com/en-us/research/publication/customizable-route-planning/?from=http%3A%2F%2F ...
- EDM营销应注意要定期发送邮件
一个成熟的EDM营销方案应该要确定完整的邮件发送频率,并且严格按照计划执行.这点在EDM营销过程中非常重要,下面为大家分析一下. 一个EDM营销应该确定一下发送的时间,每月或者每周发送一次,这样用户能 ...
- (三)Maven之仓库
目录 引言:坐标和依赖是一个构件在Maven世界中逻辑表示方式,而构件的物理表示方式就是文件而已,仓库就是统一管理这些文件的地方. 目录 仓库类别 本地仓库 远程仓库: 中仓仓库(自带的默认远程仓库) ...