poj2019 二维RMQ裸题
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions:8623 | Accepted: 4100 |
Description
FJ has, at great expense, surveyed his square farm of N x N hectares (1 <= N <= 250). Each hectare has an integer elevation (0 <= elevation <= 250) associated with it.
FJ will present your program with the elevations and a set of K (1 <= K <= 100,000) queries of the form "in this B x B submatrix, what is the maximum and minimum elevation?". The integer B (1 <= B <= N) is the size of one edge of the square cornfield and is a constant for every inquiry. Help FJ find the best place to put his cornfield.
Input
* Lines 2..N+1: Each line contains N space-separated integers. Line 2 represents row 1; line 3 represents row 2, etc. The first integer on each line represents column 1; the second integer represents column 2; etc.
* Lines N+2..N+K+1: Each line contains two space-separated integers representing a query. The first integer is the top row of the query; the second integer is the left column of the query. The integers are in the range 1..N-B+1.
Output
Sample Input
5 3 1
5 1 2 6 3
1 3 5 2 7
7 2 4 6 1
9 9 8 6 5
0 6 9 3 9
1 2
Sample Output
5 C++代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <set>
#include <vector>
#include <map>
#include <queue>
#include <set>
#include <math.h>
#include <algorithm>
using namespace std;
#define MAXN 250 + 5
int dp[MAXN][MAXN][];
int dp1[MAXN][MAXN][];
int a[MAXN][MAXN];
int n,m;
void st(){
for(int i=;i<=n;i++)
for(int k=;(<<k)<=m;k++){
for(int j=;j+(<<k)-<=m;j++){
if(k==){
dp[i][j][k]=dp1[i][j][k]=a[i][j];
}
else {
dp[i][j][k]=max(dp[i][j][k-],dp[i][j+(<<(k-))][k-]);
dp1[i][j][k]=min(dp1[i][j][k-],dp1[i][j+(<<(k-))][k-]);
}
}
}
}
int rmq2dmax(int x,int y,int x1,int y1){
int k=log2(y1-y+);
int mm=max(dp[x][y][k],dp[x][y1-(<<k)+][k]);
for(int i=x+;i<=x1;i++)
mm=max(mm,max(dp[i][y][k],dp[i][y1-(<<k)+][k]));
return mm;
}
int rmq2dmin(int x,int y,int x1,int y1){
int k=log2(y1-y+);
int mm=min(dp1[x][y][k],dp1[x][y1-(<<k)+][k]);
for(int i=x+;i<=x1;i++)
mm=min(mm,min(dp1[i][y][k],dp1[i][y1-(<<k)+][k]));
return mm;
} int main(int argc, char const *argv[])
{
int b,k;
scanf("%d%d%d",&n,&b,&k);
m = n;
for(int i = ;i <= n; i++){
for(int j = ;j <= n ; j++){
scanf("%d",&a[i][j]);
}
}
st();
while(k--){
int p,q;
scanf("%d%d",&p,&q);
cout << rmq2dmax(p,q,p + b - ,q + b - ) - rmq2dmin(p,q,p + b - ,q + b - )<< endl;
}
return ;
}
二维RMQ
poj2019 二维RMQ裸题的更多相关文章
- poj2019 二维RMQ模板题
和hdu2888基本上一样的,也是求一个矩阵内的极值 #include<iostream> #include<cstring> #include<cstdio> # ...
- hdu 2888 二维RMQ模板题
Check Corners Time Limit: 2000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- 题解报告:poj 1195 Mobile phones(二维BIT裸题)
Description Suppose that the fourth generation mobile phone base stations in the Tampere area operat ...
- Cornfields POJ - 2019(二维RMQ板题)
就是求子矩阵中最大值与最小值的差... 板子都套不对的人.... #include <iostream> #include <cstdio> #include <sstr ...
- Cornfields poj2019 二维RMQ
Cornfields Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Submit S ...
- POJ 2019 Cornfields [二维RMQ]
题目传送门 Cornfields Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 7963 Accepted: 3822 ...
- HDU 2888:Check Corners(二维RMQ)
http://acm.hdu.edu.cn/showproblem.php?pid=2888 题意:给出一个n*m的矩阵,还有q个询问,对于每个询问有一对(x1,y1)和(x2,y2),求这个子矩阵中 ...
- 【HDOJ 2888】Check Corners(裸二维RMQ)
Problem Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numb ...
- HDU 2888 Check Corners (模板题)【二维RMQ】
<题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...
随机推荐
- hdu 4609: 3-idiots (FFT)
题目链接 题意:从N个数中,选出三个两两不同的数,求这三个数能够作为一个三角形的三边长的概率. 题解:用一个数组num[]记录大小为 i 的数出现的次数,通过 num[] 卷 num[] 得到 num ...
- vue+elementUI 做的递归组件
废话少说,直接上最新鲜的干货 当然,你得提前安装好bootstrap,router,element-ui,vue-axios 1.上递归组件,此处参考了某位大神的代码,具体不知道是谁,因为到处都有人用 ...
- A1065
判断两数相加是否大于第三数,大于输出true,否则输出false(相等也是false) 1 需要注意数字溢出的问题: 2 先判断溢出,因为在a,b都是负数最小值的情况下,相加直接是正数,在c较小的时候 ...
- 有了二叉查找树、平衡树(AVL)为啥还需要红黑树?
序言 二叉查找树的缺点 平衡二叉树 虽然平衡树解决了二叉查找树退化为近似链表的缺点,能够把查找时间控制在 O(logn),不过却不是最佳的,因为平衡树要求每个节点的左子树和右子树的高度差至多等于1,这 ...
- 死锁(deadlocks)
1.定义 所谓死锁<DeadLock>: 是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象.若无外力作用,它们都将无法推进下去,此时称系统处于死锁状态或系统产生了 ...
- 【BZOJ5092】分割序列(高维前缀和)
题意:对于一个长度为n的非负整数序列b_1,b_2,...,b_n, 定义这个序列的能量为:f(b)=max{i=0,1,...,n}((b_1 xor b_2 xor...xor b_i)+(b_{ ...
- Fiddler抓取手机Https请求
下载并安装Fiddler证书生成器 1.打开Fiddler—>Tools—>Telerik Fiddler Options... 2.Connections选项中勾选Allow remot ...
- fedora18 You might need to install dependency packages for libxcb.
22 down vote The page Qt for X11 Requirements lists some packages required to build Qt on Debian. Th ...
- tp5关联模型进行条件查询
public function wordOne(){ return $this->hasOne('TeachWord','id','w_id')->field('id,pid,title' ...
- Sublime如何设置背景透明
Sublime如何设置背景透明 下载sublime 透明背景插件 我用的是git下载插件: git clone https://github.com/vhanla/SublimeTextTrans.g ...