题目:Fibonacci Check-up

链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855

分析:

1)二项式展开:$(x+1)^n = \sum^n_{k=0}{C^k_n * x^k}$

2)Fibonacci数列可以写为:$ \left[ \begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right]^n$的左下角项。

3)构造矩阵$ T = Fib+E = \left[ \begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right] + \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] = \left[ \begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right]$。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long LL;
int MOD;
struct Matrix{
LL a[][];
void init(int f){
memset(a,,sizeof a);
if(f==-)return;
for(int i=;i<;++i)a[i][i]=;
}
};
Matrix operator*(Matrix& A,Matrix& B){
Matrix C;C.init(-);
for(int i=;i<;++i)
for(int j=;j<;++j)
for(int k=;k<;++k){
C.a[i][j]+=A.a[i][k]*B.a[k][j];
C.a[i][j]%=MOD;
}
return C;
}
Matrix operator^(Matrix A,int n){
Matrix Rt;Rt.init();
for(;n;n>>=){
if(n&)Rt=Rt*A;
A=A*A;
}
return Rt;
}
int main(){
int n,Case;scanf("%d",&Case);
Matrix A,T;
T.a[][]=;T.a[][]=;
T.a[][]=;T.a[][]=; for(;Case--;){
scanf("%d%d",&n,&MOD);
A=T^n;
LL ans=A.a[][];
printf("%lld\n",ans%MOD);
} return ;
}

4)$\sum^n_{k=0}{C^k_n * f(k)} = f(2*n) $

5)证明:$ \sum^n_{k=0}{C^k_n * f(k)} $

= $ \sum^n_{k=0}{ C^k_n * { [ { ( \frac{1+\sqrt{5}}{2} )}^k - { ( \frac{1-\sqrt{5}}{2} )}^k }] } $

= $ \sum^n_{k=0}{ C^k_n * {( \frac{1+\sqrt{5}}{2} )}^k } - \sum^n_{k=0}{ C^k_n * { ( \frac{1-\sqrt{5}}{2} )}^k } $

= $ { ( \frac{1+\sqrt{5}}{2} + 1 ) }^k $ - $ { ( \frac{1-\sqrt{5}}{2} + 1 ) }^k $

= $ { ( \frac{3+\sqrt{5}}{2} ) }^k $ - $ { ( \frac{3-\sqrt{5}}{2} ) }^k $

= $ { ( \frac{6+2*\sqrt{5}}{4} ) }^k $ - $ { ( \frac{6-2*\sqrt{5}}{4} ) }^k $

= $ { ( \frac{1+\sqrt{5}}{2} ) }^{2k} $ - $ { ( \frac{1-\sqrt{5}}{2} ) }^{2k} $

= $ f(2*k) $

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long LL;
int MOD;
struct Matrix{
LL a[][];
void init(int f){
memset(a,,sizeof a);
if(f==-)return;
for(int i=;i<;++i)a[i][i]=;
}
};
Matrix operator*(Matrix& A,Matrix& B){
Matrix C;C.init(-);
for(int i=;i<;++i)
for(int j=;j<;++j)
for(int k=;k<;++k){
C.a[i][j]+=A.a[i][k]*B.a[k][j];
C.a[i][j]%=MOD;
}
return C;
}
Matrix operator^(Matrix A,int n){
Matrix Rt;Rt.init();
for(;n;n>>=){
if(n&)Rt=Rt*A;
A=A*A;
}
return Rt;
}
int main(){
int n,Case;scanf("%d",&Case);
Matrix A,T;
T.a[][]=;T.a[][]=;
T.a[][]=;T.a[][]=;
for(;Case--;){
scanf("%d%d",&n,&MOD);
A=T^(n+n);
LL ans=A.a[][];
printf("%lld\n",ans%MOD);
} return ;
}

[HDU2855]Fibonacci Check-up的更多相关文章

  1. HDU2855—Fibonacci Check-up

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目意思:求一个式子g[n]=∑C(n,k)*f[k],n很大,很明显是一个矩阵快速幂.可以打表 ...

  2. 可变长度的Fibonacci数列

    原题目: Write a recursive program that extends the range of the Fibonacci sequence.  The Fibonacci sequ ...

  3. Applying Eigenvalues to the Fibonacci Problem

    http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/ The Fibonacci problem is a ...

  4. hdu 5167 Fibonacci 打表

    Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Proble ...

  5. 【Fibonacci】BestCoder #28B Fibonacci

    Fibonacci Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  6. hdu 5167 Fibonacci(预处理)

    Problem Description Following is the recursive definition of Fibonacci sequence: Fi=⎧⎩⎨01Fi−1+Fi−2i ...

  7. [Algorithm] Fibonacci Sequence - Anatomy of recursion and space complexity analysis

    For Fibonacci Sequence, the space complexity should be the O(logN), which is the height of tree. Che ...

  8. fibonacci数列的性质和实现方法

    fibonacci数列的性质和实现方法 1.gcd(fib(n),fib(m))=fib(gcd(n,m)) 证明:可以通过反证法先证fibonacci数列的任意相邻两项一定互素,然后可证n>m ...

  9. LeetCode 842. Split Array into Fibonacci Sequence

    原题链接在这里:https://leetcode.com/problems/split-array-into-fibonacci-sequence/ 题目: Given a string S of d ...

随机推荐

  1. MySQL 1130错误,无法远程连接

    错误:ERROR 1130: Host '192.168.1.3' is not allowed to connect to thisMySQL serve 错误1130:主机192.168.1.3” ...

  2. C#获取本地路径

    /// <summary> /// 本地路径 /// </summary> /// <param name="path"></param& ...

  3. SimplePropertyRetriever

    var SimplePropertyRetriever = {     getOwnEnumerables: function (obj) {         return this._getProp ...

  4. [LuoguP1829]Crash的文明表格(二次扫描与换根+第二类斯特林数)

    Solution: ​ 由于 \[ x^m = \sum_{i=0}^m{~m~\choose i}{~x~\brace i}i! \] ​ 将所求的式子化成这样,挖掘其性质,考虑是否能从儿子转移(或 ...

  5. vue.js2.0 (简易)水果商城 vuex vant-ui

    vue.js2.0 (简易)水果商城 vuex vant-ui:https://segmentfault.com/a/1190000015690250 vue2.5全家桶 高仿vivo商城 百分之95 ...

  6. 动态规划——稀疏表求解RMQ问题

    RMQ (Range Minimum/Maximum Query)问题,即区间最值查询问题,是求解序列中的某一段的最值的问题.如果只需要询问一次,那遍历枚举(复杂度O(n))就是最方便且高效的方法,但 ...

  7. HDU Stealing Harry Potter's Precious(状压BFS)

    状压BFS 注意在用二维字符数组时,要把空格.换行处理好. #include<stdio.h> #include<algorithm> #include<string.h ...

  8. 如何写一个简单的基于 Qt 框架的 HttpServer ?

    httpserver.h #ifndef HTTPSERVER_H #define HTTPSERVER_H #include <QObject> #include <QtCore& ...

  9. emit写了个实体转换程序

    就我自己知道的,automapper是常用的,还是比较合适好用.不过我一般采用MVVM模式,其实就是简单的model名称不同而已,而这些转换器升级,扩展的很多,功能丰富,但是我用不到啊,又不能按照自己 ...

  10. [转载]Redux原理(一):Store实现分析

    写在前面 写React也有段时间了,一直也是用Redux管理数据流,最近正好有时间分析下源码,一方面希望对Redux有一些理论上的认识:另一方面也学习下框架编程的思维方式. Redux如何管理stat ...