Dropout作用

  1. hinton的论文Improving neural networks by preventing coadaptation提出的,主要作用就是为了防止模型过拟合。当模型参数较多,训练数据较少时候,根据线性代数相关知识可以知道,当前模型可以非常完美的拟合我们的曲线。但该模型对测试数据集可能就没有很好的表现了,也就是说训练出的模型泛化能力很弱,我们称之为过拟合。从文章题目通过阻止特征检测器的共同作用来提高神经网络的性能可以看出,网络在提取训练集特征时,舍弃掉了一部分特征来提高网络的泛化能力。

基本认识

  1. Dropout用网络训练时工作变化来定义的话,是指在模型训练时随机让某些神经单元的权重停止本次更新,等下次训练时就有可能更新,对与一层中每个神经单元来说,它们更新的概率是相同的。
  2. hinton论文中没有数学公式,只是作者直观解释:
  3. 1. 网络中某层神经单元权值更新是等概率的,因此,不能保证相邻的神经单元每次都更新,直观解释就是有些特征不必完全依托于其他的特征。举个栗子:假如有5兄弟,老大和老二,老二和老三、、、相邻两个人才能完成一个任务,现在呢,我们把5兄弟放在黑屋子里面,每次随机选择一个兄弟执行任务,如果完成不了就惩罚其他兄弟,同时被选中的大兄弟当面对自己这次没有完成任务来自我反思(权值更新),在我们的逼迫下,进行了N次随机选择,发现5兄弟都能通过自我努力(权值更新)独立完成任务。
  4. 2. 论文讲,把dropout看作是,针对每次batch_size大的样本集训练,对应的网络结构是不同的,但是呢,它们之间还可以共享权重,不同的样本集合训练出了不同的网络模型。最后,得出的网络模型是每次训练的模型的“平均模型”。这种解释还是不错的^.^……
  5. 3. dropout比作是贝叶斯,贝叶斯有个大前提(不一定对哈)所有的特征是相互独立的,训练样本较少时候,独立学习每个特征,测试时候将所有的特征相乘。实际效果还不错。
  6. 4. 仿生物进化。适者生存,不断适应环境的变化。
  7. 参考来源:
    https://github.com/rasmusbergpalm/DeepLearnToolbox
  8. 【面向代码】学习 Deep Learning(一)Neural Network
  9. http://www.cnblogs.com/tornadomeet/p/3258122.html
    http://blog.csdn.net/qq_25073253/article/details/72457840

paper 158:CNN(卷积神经网络):Dropout Layer的更多相关文章

  1. TensorFlow——CNN卷积神经网络处理Mnist数据集

    CNN卷积神经网络处理Mnist数据集 CNN模型结构: 输入层:Mnist数据集(28*28) 第一层卷积:感受视野5*5,步长为1,卷积核:32个 第一层池化:池化视野2*2,步长为2 第二层卷积 ...

  2. 3层-CNN卷积神经网络预测MNIST数字

    3层-CNN卷积神经网络预测MNIST数字 本文创建一个简单的三层卷积网络来预测 MNIST 数字.这个深层网络由两个带有 ReLU 和 maxpool 的卷积层以及两个全连接层组成. MNIST 由 ...

  3. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  4. [转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR

    Theano下用CNN(卷积神经网络)做车牌中文字符OCR 原文地址:http://m.blog.csdn.net/article/details?id=50989742 之前时间一直在看 Micha ...

  5. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  6. CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

    https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网 ...

  7. CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM

    http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.g ...

  8. day-16 CNN卷积神经网络算法之Max pooling池化操作学习

    利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...

  9. cnn(卷积神经网络)比较系统的讲解

    本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之 ...

  10. Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例

    CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...

随机推荐

  1. 知道css有个content属性吗?有什么作用?有什么应用?

    css的content属性专门应用在 before/after 伪元素上,用来插入生成内容.最常见的应用是利用伪类清除浮动. //一种常见利用伪类清除浮动的代码 .clearfix:after { c ...

  2. 【Visual Studio】 使用EF、 Linq2Sql快速创建数据交互层(一)

    项目伊始,创建数据库交互层代码是底层框架的首要任务.常用的做法包括手动编码.Hibernate或者动软之类的代码生成器,而多数人忽略了.Net环境下VS提供的两套非常好用的数据层工具. EF和Linq ...

  3. SmokeTest测试流程

    没办法了,本来是表格,但是粘贴不过来 测试目的: 用于检测该版本在基本的应用场景下,基本的功能是否满足. 测试前提: 发货版本 示例:ATV9冒烟测试测试项解读 表格获取:Google ATV hel ...

  4. 【PP系列】SAP 取消报工后修改日期

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[PP系列]SAP 取消报工后修改日期   前言 ...

  5. ALDS1_1_3_D Areas on the Cross-Section Diagram 遇见了几个有意思的语法问题

    Your task is to simulate a flood damage. For a given cross-section diagram, reports areas of flooded ...

  6. 15.队列Queue的特点以及使用,优先级等

    #生产者与消费者模式,模式解释:比如MVC设计模式 ''' 1.队列 (1)特点:先进先出 (2)python2 VS python3 python2:from Queue import queue ...

  7. bash 特殊符号的含义

    bash常见特殊符号及含义 linux中shell变量的含义解释

  8. Linux的mysql部署

    1.  先输入代码yum install wget -y才可以做后面的 2.下载并安装MySQL官方的 Yum Repository   代码: wget -i -c http://dev.mysql ...

  9. 关于分布式唯一ID,snowflake的一些思考及改进(完美解决时钟回拨问题)

    1.写唯一ID生成器的原由 在阅读工程源码的时候,发现有一个工具职责生成一个消息ID,方便进行全链路的查询,实现方式特别简单,核心源码不过两行,根据时间戳以及随机数生成一个ID,这种算法ID在分布式系 ...

  10. 【问题解决方案】Markdown正文中慎用星号否则容易变斜体

    参考链接: [学习总结]Markdown 使用的正确姿势:第九部分-斜体and加粗 原理: 注意: Markdown中,若在正文中使用星号,如乘号或者指针的星号时,需要特别注意 当一句话中包含两个或者 ...