Description



点数<=100000,操作数<=200000

Solution

经典的LCT维护子树路径信息的问题。

具体来说,我们对于每一个节点,它在splay上的子树对应了原树中的一条祖先后代链(换过根的),记录这个点的splay子树中的所有黑点以及它们的虚子树中的所有黑点分别到这条祖先后代链的链顶和链底的0次,1次,2次距离和,另外记录splay的子树的所有虚儿子到这条链的答案。

update相当于是合并两条链,以到链顶为例,左半边直接加,右半边每个的距离要多左子树的大小,利用\((x+v)^2=x^2+2xv+v^2\)拆开来计算即可。

同时维护到链顶和链底是为了在reverse操作的时候能够快速求出答案。

update以及access的时候0次1次2次项拆系数合并即可,可以写成模块化就简单一些。

时间复杂度\(O(n\log n)\)

Code

我也不知道为什么不开O2跑不过...

#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define fo(i,a,b) for(int i=a;i<=b;++i)
#define fod(i,a,b) for(int i=a;i>=b;--i)
typedef long long LL;
const int N=100005;
const int mo=998244353;
using namespace std;
int n;
LL sqr(const LL x) {return x*x;}
namespace LCT
{
int fn[N],f[N],t[N][2],r[N];
LL sz[N],vl[N][3],sp[N],sm[N][2][3];
LL cl[N];
void rev(const int k)
{
r[k]^=1,swap(sm[k][0],sm[k][1]);
}
void down(int k)
{
if(r[k])
{
swap(t[k][0],t[k][1]),fn[t[k][0]]=0,fn[t[k][1]]=1;
rev(t[k][0]),rev(t[k][1]);
r[k]=0;
}
}
void merge(LL *a,LL *b,const LL u,const LL v)
{
a[0]=a[0]+v*b[0];
a[1]=a[1]+v*(b[1]+b[0]*u);
a[2]=a[2]+v*(b[2]+b[1]*u*(LL)2+b[0]*sqr(u));
}
void up(int k)
{
if(!k) return;
sz[k]=sz[t[k][0]]+sz[t[k][1]]+1;
sp[k]=sp[t[k][0]]+vl[k][2]+sp[t[k][1]];
fo(x,0,1)
{
int u=t[k][x],v=t[k][1^x];
sm[k][x][0]=cl[k],sm[k][x][1]=sz[u]*cl[k],sm[k][x][2]=sqr(sz[u])*cl[k];
merge(sm[k][x],sm[u][x],0,1);
merge(sm[k][x],vl[k],sz[u],1);
merge(sm[k][x],sm[v][x],sz[u]+1,1);
}
}
void hb(int x,int y,int p)
{
if(x&&p>=0) t[x][p]=y;
if(y) fn[y]=p,f[y]=x;
}
void rot(int k)
{
int fa=f[k],p=fn[k];
hb(fa,t[k][1-p],p);
hb(f[fa],k,fn[fa]);
hb(k,fa,1-p);
up(fa),up(k),up(f[k]);
}
int d[N];
void splay(int k,int x)
{
d[d[0]=1]=k;
while(fn[d[d[0]]]!=-1&&f[d[d[0]]]!=x) d[++d[0]]=f[d[d[0]-1]];
fod(i,d[0],1) down(d[i]);
while(f[k]!=x&&fn[k]!=-1)
{
if(fn[f[k]]==-1||f[f[k]]==x) rot(k);
else if(fn[k]==fn[f[k]]) rot(f[k]),rot(k);
else rot(k),rot(k);
}
}
void access(int k)
{
int r=k;
splay(k,0);
merge(vl[k],sm[t[k][1]][0],1,1),hb(k,t[k][1],-1),t[k][1]=0;
up(k);
while(f[k])
{
int x=f[k];splay(x,0);
merge(vl[x],sm[t[x][1]][0],1,1);
merge(vl[x],sm[k][0],1,-1);
fn[t[x][1]]=-1,hb(x,k,1),up(x),k=x;
}
splay(r,0);
}
void make(int k)
{
access(k),rev(k);
}
void link(int x,int y)
{
make(y),access(x);
f[y]=x,fn[y]=-1;
up(x);
}
void init()
{
fo(i,1,n) sz[i]=1;
fo(i,1,n-1)
{
int x,y;
scanf("%d%d",&x,&y);
link(x,y);
}
}
void modify(int k)
{
make(k),cl[k]^=1,up(k);
}
LL query(int x,int y)
{
make(x),access(y);
return sp[y];
}
}
using namespace LCT;
int main()
{
cin>>n;
init();
int q;
cin>>q;
fo(i,1,q)
{
int tp,x,y;
scanf("%d%d",&tp,&x);
if(tp==0) modify(x);
else
{
scanf("%d",&y);
printf("%lld\n",query(x,y)%mo);
}
}
}

【GDSOI2019】滑稽二乘法【数据结构】【LCT】的更多相关文章

  1. 模板—数据结构—LCT

    模板—数据结构—LCT Code: #include <cstdio> #include <algorithm> using namespace std; #define N ...

  2. 树上数据结构——LCT

    目录 树上数据结构--LCT 概述 基本概念 核心操作 其他操作 完整模板 树上数据结构--LCT 概述 LCT是一种强力的树上数据结构,支持以下操作: 链上求和 链上求最值 链上修改 子树修改 子树 ...

  3. Redis系统学习 二、数据结构

    一.字符串     1.在Redis里,字符串是最基本的数据结构.当你在思索着关键字-值对时,你就是在死锁着字符串数据结构.不要被名字给搞混了. 常见实例: set users:leto " ...

  4. 剑指offer-第二章数据结构(数组,字符串,链表,树,栈与队列)及例题

    一.数组(最简单的数据结构) 定义:占据一块连续内存并按照顺序存储数据.创建时先指定大小,分配内存. 优点:时间效率高.实现简单的hash(下标为key,对应的数据为value) 缺点:空间效率差.如 ...

  5. mysql索引之二:数据结构及算法原理

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  6. Redis(二)数据结构与键管理

    一.基础知识 1.全局命令 keys *   :查看所有键 dbsize:返回当前数据库中键的总数 exists key:检查键是否存在 del key ... :删除键 expire key sec ...

  7. 二.python数据结构的性能分析

    目录: 1.引言 2.列表 3.字典 一.引言 - 现在大家对 大O 算法和不同函数之间的差异有了了解.本节的目标是告诉你 Python 列表和字典操作的 大O 性能.然后我们将做一些基于时间的实验来 ...

  8. linux内核系列(二)内核数据结构之链表

    双向链表 传统链表与linu内核链表的区别图: 图一 图二 从上图中看出在传统链表中各种不同链表间没有通用性,因为各个数据域不同,而在linux内核中巧妙将链表结构内嵌到数据域结构中使得不同结构之间能 ...

  9. ES6快速入门(二)数据结构

    ES6快速入门 一.解构 1. 对象解构 let person = { name: 'Tang', age: 28 }; //必须同名,必须初始化 let {name, age} = person; ...

随机推荐

  1. CSP 字符串匹配(201409-3)

    问题描述 给出一个字符串和多行文字,在这些文字中找到字符串出现的那些行.你的程序还需支持大小写敏感选项:当选项打开时,表示同一个字母的大写和小写看作不同的字符:当选项关闭时,表示同一个字母的大写和小写 ...

  2. 福建工程学院第十四届ACM校赛B题题解

    第二集,未来的我发量这么捉急的吗 题意: 有n个数,请问有多少对数字(i,j)(1<=i<j<=n),满足(a[i]^a[j])+((a[i]&a[j])<<1) ...

  3. Nginx负载均衡调度算法

    Nginx支持的负载均衡调度算法方式如下: 1. weight轮询(默认) 接收到的请求按照顺序逐一分配到不同的后端服务器,即使在使用过程中,某一台后端服务器宕机,nginx会自动将该服务器剔除出队列 ...

  4. JS基础_JS的HelloWorld

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. spring基于注解的IoC以及IoC的案例

    1.Spring中IoC的常用注解 1.1明确: (1)基于注解的配置和xml的配置要实现的功能都是一样的,都是要降低程序之间的耦合,只是配置的形式不一样 2.案例:使用xml方式和注解方式实现单表的 ...

  6. JS代码格式化

    JS代码格式化也就是规范化,保留必要的换行和缩进使代码阅读起来更容易.团队协同工作时会有相应的标准,大家要保证统一的代码风格,这样在合并代码的时候才不容易出问题.通过快捷键Ctrl+Shift+F进行 ...

  7. TensorFlow入门——hello

    上一节说了TensorFlow的安装,这一节说一下测试的问题 新建一个Python文件,输入 import tensorflow as tf hello = tf .constant (’Hello, ...

  8. Notepad++ 文件丢失了,找回历史文件方法

    一开始我还以为文件丢失找不到了,心凉了半截,后来找到了它的备份路径 C:\Users\Administrator\AppData\Roaming\Notepad++\backup

  9. 点击切换JS

    $(function(){ var tabnav = $("#tab-nav ul li"); tabnav.click(function(){ $(this).addClass( ...

  10. DP问题练习1:数字三角最短路径问题

    DP问题练习1:数字三角最短路径问题 问题描述 给定一个数字三角形,找到从顶部到底部的最小路径和.每一步可以移动到下面一行的相邻数字上. 样例: 比如,给出下列数字三角形: 2 3 4 6 5 7 4 ...