首先考虑第一问。每个联通块的情况是相对独立的,所以可以分别求每个联通块的答案。无向图中存在欧拉路的条件是奇点数为0或2,那么合法方案肯定是tp到一个奇点,通过一条欧拉路到另一个奇点,再tp到另一个奇点……

设共k个联通块,第$i$个里奇点个数为$c_i$,那么答案即为$\sum_{i=1}^k max(1,\frac c2)-1$,最后-1是因为选起点不用浪费传送次数。

关于构造方案,我们先对于每个联通块求它内部的奇点。如果没有的话直接跑欧拉路即可。

如果有奇点,那么必有偶数个,因为每个联通块的点的度数之和必为偶数。可以新建一个源点,向所有奇点连边,再跑欧拉路。

最后的方案输出:

如果从源点到某个点,那这个点一定是奇点,操作为1 x。

从某个点跑到源点,显然不用管。

从点x跑到点y,操作为0 y。

另外,写暴力圈套圈的欧拉路算法还是要用非递归版的,直接dfs有可能爆栈也可能直接T掉(递归很慢)。

#include<cstdio>
#include<iostream>
#include<cstring>
#define pa pair<int,int>
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int N=1e5+5;
int n,m;
int to[N*10],nxt[N*10],head[N],tot=1,deg[N];
int st[N*10],top,vis[N],v[N*10];
int ans=0,cnt;
pa res[N*10];
void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
deg[x]++;
}
void dfs(int x)
{
vis[x]=1;
if(deg[x]&1)st[++top]=x;
for(int i=head[x];i;i=nxt[i])
if(!vis[to[i]])dfs(to[i]);
return ;
}
int syst[N*10],systop;
void euler()
{
systop=0;
syst[++systop]=0;
while(systop>0)
{
int x=syst[systop],i=head[x];
while(i&&v[i])i=nxt[i];
if(i)
{
syst[++systop]=to[i];
v[i]=v[i^1]=1;
head[x]=nxt[i];
}
else systop--,st[++top]=x;
}
} int main()
{
n=read();m=read();
for(int i=1;i<=m;i++)
{
int x=read(),y=read();
add(x,y);add(y,x);
}
int ans=0;
for(int i=1;i<=n;i++)
{
if(deg[i]&&!vis[i])
{
top=0;
dfs(i);
head[0]=0;
if(!top)add(0,i),add(i,0),add(i,0),add(0,i);
else while(top){int now=st[top--];add(0,now);add(now,0);};
euler();
int now;
while(top>1)
{
now=st[top--];
if(now)
res[++cnt]=make_pair(0,now);
else res[++cnt]=make_pair(1,st[top--]),ans++;
}
}
}
printf("%d\n%d\n",ans-1,res[1].second);
for(int i=2;i<=cnt;i++)
printf("%d %d\n",res[i].first,res[i].second);
return 0;
}

[jzoj5840]Miner 题解(欧拉路)的更多相关文章

  1. [CSP-S模拟测试]:Miner(欧拉路)

    题目背景 $And\ the\ universe\ said\ you\ are\ the\ daylight \\ And\ the\ universe\ said\ you\ are\ the\ ...

  2. 【HIHOCODER 1176】 欧拉路·一

    描述 小Hi和小Ho最近在玩一个解密类的游戏,他们需要控制角色在一片原始丛林里面探险,收集道具,并找到最后的宝藏.现在他们控制的角色来到了一个很大的湖边.湖上有N个小岛(编号1..N),以及连接小岛的 ...

  3. 洛谷 P1341 无序字母对 Label:欧拉路 一笔画

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  4. UVA - 10129Play on Words(欧拉路)

    UVA - 10129Play on Words Some of the secret doors contain a very interesting word puzzle. The team o ...

  5. hdu_5883_The Best Path(欧拉路)

    题目链接:hdu_5883_The Best Path 题意: n 个点 m 条无向边的图,找一个欧拉通路/回路使得这个路径所有结点的异或值最大. 题解: 节点 i 的贡献为((du[i] +1/ 2 ...

  6. 【cf789D】Weird journey(欧拉路、计数)

    cf788B/789D. Weird journey 题意 n个点m条边无重边有自环无向图,问有多少种路径可以经过m-2条边两次,其它两条边1次.边集不同的路径就是不同的. 题解 将所有非自环的边变成 ...

  7. [cf1038E][欧拉路]

    http://codeforces.com/contest/1038/problem/E E. Maximum Matching time limit per test 2 seconds memor ...

  8. POJ 2513 - Colored Sticks - [欧拉路][图的连通性][字典树]

    题目链接: http://poj.org/problem?id=2513 http://bailian.openjudge.cn/practice/2513?lang=en_US Time Limit ...

  9. hdu 5833(欧拉路)

    The Best Path Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

随机推荐

  1. Minimal Power of Prime

    题目链接 题意:输入n,求所有质因子幂的最小值.n奇大无比. 思路:先对n所有n开五次方根的质因子约完,然后如果没有除尽的话,因子最多也就4个了,所以幂数大于1的情况有p1^4,p1^3, p1^2  ...

  2. 使用Gradle打出带签名的apk包

    step1:配置build.gradle文件 step1:切换到项目所在目录,用build命令打包 首先 gradle clean 命令清理一下当前项目 E:\AndroidStudioProject ...

  3. left、pixelLeft、posLeft的区别

    yexj00.style.pixelLeft=50yexj00.style.left=50pxyexj00.style.posLeft=50he.style.pixelLeft=39he.style. ...

  4. USACO 5.5 章节

    Picture 题目大意 IOI 1998 求n (<=5000)个矩形 覆盖的图形 的周长(包括洞), 坐标范围[-10000,10000] 题解 一眼离散化+2维线段树,但仔细一想 空间不太 ...

  5. Ubutun13.10下安装fcitx

    Ubuntu下自带的Ibus输入法平台并不好用,现在主要使用的是fcitx输入法. 安装fcitx输入法的安装和配置过程如下: 首先卸载掉ibus,输入命令 sudo apt-get remove i ...

  6. xterm.js的深入学习

    demo <template> <div id="app" class="app-box">Hello</div> < ...

  7. [fw]error: aggregate value used where an integer was expected

    一個自訂struct型態的變數,若想要轉換為unsigned,直接使用cast,gcc(version 4.4.3)編譯會回報錯誤. 例如: struct _test { unsigned hour ...

  8. /etc/fstab自动挂载文件

    装了Windows 10和Ubuntu双系统,想把win10下的“文娱“盘自动开机挂载到Ubuntu上. 首先你看一下/etc/fstab这个文件喽: 依葫芦画瓢呗.首先看看你要挂载的硬盘是哪一块: ...

  9. 看FPGA面试题时见到被考到的几个逻辑电路

    8位 D触发器: module dff8(clk , reset, d, q); input clk; input reset; :] d; :] q; :] q; always @ (posedge ...

  10. 使用jquery.validate组件进行前端数据验证并实现异步提交前验证检查

    学习如鹏网掌上组的项目开发,使用到了前端验证,视频里使用的ValidateForm验证框架,但是我使用的Hui的框架中使用的是jquery.validate验证框架 所以自行学习jquery.vali ...