题目描述

The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their finest gowns, complete with corsages and new shoes. They know that tonight they will each try to perform the Round Dance.

Only cows can perform the Round Dance which requires a set of ropes and a circular stock tank. To begin, the cows line up around a circular stock tank and number themselves in clockwise order consecutively from 1..N. Each cow faces the tank so she can see the other dancers.

They then acquire a total of M (2 <= M <= 50,000) ropes all of which are distributed to the cows who hold them in their hooves. Each cow hopes to be given one or more ropes to hold in both her left and right hooves; some cows might be disappointed.

约翰的N (2 <= N <= 10,000)只奶牛非常兴奋,因为这是舞会之夜!她们穿上礼服和新鞋子,别 上鲜花,她们要表演圆舞.

只有奶牛才能表演这种圆舞.圆舞需要一些绳索和一个圆形的水池.奶牛们围在池边站好, 顺时针顺序由1到N编号.每只奶牛都面对水池,这样她就能看到其他的每一只奶牛.

为了跳这种圆舞,她们找了 M(2<M< 50000)条绳索.若干只奶牛的蹄上握着绳索的一端, 绳索沿顺时针方绕过水池,另一端则捆在另一些奶牛身上.这样,一些奶牛就可以牵引另一些奶 牛.有的奶牛可能握有很多绳索,也有的奶牛可能一条绳索都没有.

对于一只奶牛,比如说贝茜,她的圆舞跳得是否成功,可以这样检验:沿着她牵引的绳索, 找到她牵引的奶牛,再沿着这只奶牛牵引的绳索,又找到一只被牵引的奶牛,如此下去,若最终 能回到贝茜,则她的圆舞跳得成功,因为这一个环上的奶牛可以逆时针牵引而跳起旋转的圆舞. 如果这样的检验无法完成,那她的圆舞是不成功的.

如果两只成功跳圆舞的奶牛有绳索相连,那她们可以同属一个组合.

给出每一条绳索的描述,请找出,成功跳了圆舞的奶牛有多少个组合?

For the Round Dance to succeed for any given cow (say, Bessie), the ropes that she holds must be configured just right. To know if Bessie's dance is successful, one must examine the set of cows holding the other ends of her ropes (if she has any), along with the cows holding the other ends of any ropes they hold, etc. When Bessie dances clockwise around the tank, she must instantly pull all the other cows in her group around clockwise, too. Likewise,

if she dances the other way, she must instantly pull the entire group counterclockwise (anti-clockwise in British English).

Of course, if the ropes are not properly distributed then a set of cows might not form a proper dance group and thus can not succeed at the Round Dance. One way this happens is when only one rope connects two cows. One cow could pull the other in one direction, but could not pull the other direction (since pushing ropes is well-known to be fruitless). Note that the cows must Dance in lock-step: a dangling cow (perhaps with just one rope) that is eventually pulled along disqualifies a group from properly performing the Round Dance since she is not immediately pulled into lockstep with the rest.

Given the ropes and their distribution to cows, how many groups of cows can properly perform the Round Dance? Note that a set of ropes and cows might wrap many …

输入输出格式

输入格式:

Line 1: Two space-separated integers: N and M

Lines 2..M+1: Each line contains two space-separated integers A and B that describe a rope from cow A to cow B in the clockwise direction.

输出格式:

Line 1: A single line with a single integer that is the number of groups successfully dancing the Round Dance.

输入输出样例

输入样例#1:

5 4
2 4
3 5
1 2
4 1
输出样例#1:

1

说明

Explanation of the sample:

ASCII art for Round Dancing is challenging. Nevertheless, here is a representation of the cows around the stock tank:

       _1___
/**** \
5 /****** 2
/ /**TANK**|
\ \********/
\ \******/ 3
\ 4____/ /
\_______/

Cows 1, 2, and 4 are properly connected and form a complete Round Dance group. Cows 3 and 5 don't have the second rope they'd need to be able to pull both ways, thus they can not properly perform the Round Dance.

分析:

本题由于是单向边,所以必须要用tarjan,也就是把相同的放入同一个强连通分量,然后求总数。

CODE:

 #include<iostream>
#include<cstdio>
#include<stack>
#include<cmath>
#include<algorithm>
#include<deque>
#include<cstring>
using namespace std;
const int M=;
int n,m;
int ans;
bool vis[M];
int cnt,head[M],next[M],to[M];
int dfn[M],low[M],in;
stack<int> k;
void add(int u,int v){
++cnt;
next[cnt]=head[u];
head[u]=cnt;
to[cnt]=v;
}
void tarjan(int u){
vis[u]=true;
dfn[u]=low[u]=++in;
k.push(u);
for (int i=head[u];i!=;i=next[i]){
int v=to[i];
if (dfn[v]==-){
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(vis[v]){
low[u]=min(low[u],dfn[v]);
}
}
int v;
int now=;
if (dfn[u]==low[u])
do {
now++;
v=k.top();
k.pop();
vis[v]=false;
}while (u!=v);
if (now>=) ans++;
}
int main(){
memset(vis,false,sizeof(vis));
memset(dfn,-,sizeof(dfn));
cin>>n>>m;
int u,v;
for (int i=;i<=m;i++)
cin>>u>>v,add(u,v);
for (int i=;i<=n;i++)
if (dfn[i]==-)
tarjan(i);
cout<<ans;
return ;
}

[USACO06JAN]牛的舞会The Cow Prom的更多相关文章

  1. bzoj1654 / P2863 [USACO06JAN]牛的舞会The Cow Prom

    P2863 [USACO06JAN]牛的舞会The Cow Prom 求点数$>1$的强连通分量数,裸的Tanjan模板. #include<iostream> #include&l ...

  2. P2863 [USACO06JAN]牛的舞会The Cow Prom

    洛谷——P2863 [USACO06JAN]牛的舞会The Cow Prom 题目描述 The N (2 <= N <= 10,000) cows are so excited: it's ...

  3. luoguP2863 [USACO06JAN]牛的舞会The Cow Prom

    P2863 [USACO06JAN]牛的舞会The Cow Prom 123通过 221提交 题目提供者 洛谷OnlineJudge 标签 USACO 2006 云端 难度 普及+/提高 时空限制 1 ...

  4. [USACO06JAN] 牛的舞会 The Cow Prom

    题目描述 The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their ...

  5. [USACO06JAN]牛的舞会The Cow Prom Tarjan

    题目描述 The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their ...

  6. 洛谷——P2863 [USACO06JAN]牛的舞会The Cow Prom

    https://www.luogu.org/problem/show?pid=2863#sub 题目描述 The N (2 <= N <= 10,000) cows are so exci ...

  7. luogu P2863 [USACO06JAN]牛的舞会The Cow Prom |Tarjan

    题目描述 The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their ...

  8. 洛谷 P2863 [USACO06JAN]牛的舞会The Cow Prom

    传送门 题目大意:形成一个环的牛可以跳舞,几个环连在一起是个小组,求几个小组. 题解:tarjian缩点后,求缩的点包含的原来的点数大于1的个数. 代码: #include<iostream&g ...

  9. LuoGu P2863 [USACO06JAN]牛的舞会The Cow Prom

    题目传送门 这个题还是个缩点的板子题...... 答案就是size大于1的强连通分量的个数 加一个size来统计就好了 #include <iostream> #include <c ...

随机推荐

  1. Gitlab CI持续集成 - GitLab Runner 安装与注册

    GitLab Runner安装 需要添加gitlab官方库: # For Debian/Ubuntu/Mint curl -L https://packages.gitlab.com/install/ ...

  2. 可重入锁:ReentrantLock理解使用

    (一)可重入性 可重入性描述这样的一个问题:一个线程在持有一个锁的时候,它内部能否再次(多次)申请该锁.如果一个线程已经获得了锁,其内部还可以多次申请该锁成功.那么我们就称该锁为可重入锁.通过以下伪代 ...

  3. su 和 su - 命令有何不同

    su命令和su -命令最大的本质区别就是:前者只是切换了root身份,但Shell环境仍然是普通用户的Shell:而后者连用户和Shell环境一起切换成root身份了.只有切换了Shell环境才不会出 ...

  4. proc伪文件系统 - 加载一个进程

    内核模块的编译方法及注意事项 Ubuntu内核(2.6.32) 2.6内核中,模块的编译需要配置过的内核源码:编译.链接后生成的内核模块后缀为.ko:编译过程首先会到内核源码目录下读取顶层的Makef ...

  5. ionic3.0 中带顶部导航的下拉刷新列表的实现

    1.最终实现效果 2.html代码布局: 3.css样式控制(注:下面这两个css类名需在浏览器解析后才可看到)

  6. 使用mybatis时,sql查出来的结果映射不进逆向工程生成的该模型

    为了逆向工程生成驼峰效果,我们会在两个单词中间加_,但是在mybatis中,写sql语句时,要加别名,使别名和你逆向工程生成的该数据模型里面的属性名一致,否则查出来的结果映射不进去.

  7. 【mysql升级步骤】windows mysql版本升级 ,mysql 5.6 升级到5.7.27

    最近博主由于工作原因需要把之前安装好的的mysql 5.6.44版本卸载,然后安装mysql 5.7.*版本. 前提:为什么要升级到5.7版本? 因为博主在5.6版本上执行脚本时候报出异常:to yo ...

  8. Git中crlf自动转换的坑

    新上手一个项目,克隆了代码下来搭环境,一路坑.其中一个sh脚本执行不了,报IOException,java日志除了"找不到文件或文件夹"之外看不出任何信息,手动运行脚本才发现是脚本 ...

  9. redis-布隆过滤器使用

    占用空间测试地址 https://krisives.github.io/bloom-calculator/

  10. Android AppCompatActivity去掉actionbar fullScreen

    网上已经有很多关于这个问题的解决方案,如果你试了都没有解决,那么请往下看.首先说下网上说的解决方案: 方案一:在AndroidManifest.xml中,为需要进行全屏显示的activity添加如下主 ...