图的普里姆(Prim)算法求最小生成树
关于图的最小生成树算法------普里姆算法
首先我们先初始化一张图:

设置两个数据结构来分别代表我们需要存储的数据:
lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说明以i为终点的边的最小权值=0,也就是表示i点加入了mst数组
mst[i]:这个数组对应的下标(图顶点)的值,是当前最小生成树表示的顶点的连接的那个边的权值
我们假设v1是初始点,进行初始化,不相连的用*表示,表示无穷大!
我们先把所有v1对应的顶点的权值放进lowcost数组中,进行初始化,之后我们取出lowcost中最小的权值:
lowcost[2]=6,lowcost[3]=1,lowcost[4]=5,lowcost[5]=*,lowcost[6]=*
mst[2]=1,mst[3]=1,mst[4]=1,mst[5]=1,mst[6]=1,(所有点默认起点是V1)
明显看出,以V3为终点的边的权值最小=1,所以这条边加入mst,注意,找到最小值时(1这个值在lowcost里对应的是下标2,顶点v3),说明当前v3已经确定了他所选择的最小权值边(以v3为主动连接方),记得把lowcost[3]设置为0,代表已经确定的!!

此时,因为点V3的加入,需要更新lowcost数组和mst数组,为什么要这么更新?因为当从v1里面选出v3的时候,这个时候我们就从v3开始继续规划,因为v3的对应权值数组是:
v3:{1,5,0,5,6,4}
而此时lowcost数组值是:{1,6,0,5,*,*}
这时我们拿lowcost数组和v3对应的权值数组比较(下标要对应),把v3里比low里小的值替换给low数组(这么做的意义是,例如,下标为1时,v3是5,low是6,也就是说,下标为1对应的顶点是v2,v2可以选择和v3连接(因为权值5<6),所以5会替换6),这样得到的最终lowcost为:
lowcost[2]=5,lowcost[3]=0,lowcost[4]=5,lowcost[5]=6,lowcost[6]=4
mst[2]=3,mst[3]=0,mst[4]=1,mst[5]=3,mst[6]=3
明显看出,以V6为终点的边的权值最小=4,所以边<mst[6],6>=4加入MST

此时,因为点V6的加入,需要更新lowcost数组和mst数组,为什么要这么更新?因为当从v3里面选出v6的时候,这个时候我们就从v6开始继续规划,因为v6的对应权值数组是:
v6:{*,*,4,2,6,0}
而此时lowcost数组值是:{1,5,0,5,6,0}
这时我们拿lowcost数组和v6对应的权值数组比较(下标要对应),把v6里比low里小的值替换给low数组(这么做的意义是,例如,下标为3时,v6是2,low是5,也就是说,下标为3对应的顶点是v4,v4可以选择和v6连接(因为权值2<5),所以5会替换2),这样得到的最终lowcost为:
lowcost[2]=5,lowcost[3]=0,lowcost[4]=2,lowcost[5]=6,lowcost[6]=0
mst[2]=3,mst[3]=0,mst[4]=6,mst[5]=3,mst[6]=0
明显看出,以V4为终点的边的权值最小=2,所以边<mst[4],4>=4加入MST

此时,因为点V4的加入,需要更新lowcost数组和mst数组,为什么要这么更新?因为当从v6里面选出v4的时候,这个时候我们就从v4开始继续规划,因为v4的对应权值数组是:
v4:{5,*,5,0,*,2}
而此时lowcost数组值是:{1,5,0,0,6,0}
这时我们拿lowcost数组和v4对应的权值数组比较(下标要对应),把v4里比low里小的值替换给low数组,但是可惜的是,没有找到v4里要比lowcost小的(0不算)这样得到的最终lowcost为:
lowcost[2]=5,lowcost[3]=0,lowcost[4]=0,lowcost[5]=6,lowcost[6]=0
mst[2]=3,mst[3]=0,mst[4]=0,mst[5]=3,mst[6]=0
明显看出,以V2为终点的边的权值最小=5,所以边<mst[2],2>=5加入MST
此时,因为点V2的加入,需要更新lowcost数组和mst数组,为什么要这么更新?因为当从v4里面选出v2的时候,这个时候我们就从v2开始继续规划,因为v2的对应权值数组是:
v2:{6,0,5,*,3,*}
而此时lowcost数组值是:{1,0,0,0,6,0}
这时我们拿lowcost数组和v2对应的权值数组比较(下标要对应),把v2里比low里小的值替换给low数组,找到v2里要比lowcost小的(0不算)这样得到的最终lowcost为:
lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=3,lowcost[6]=0
mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=2,mst[6]=0
很明显,以V5为终点的边的权值最小=3,所以边<mst[5],5>=3加入MST
lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=0,lowcost[6]=0
mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=0,mst[6]=0
至此,MST构建成功,如图所示:
代码如下(仅供参考!):
图的普里姆(Prim)算法求最小生成树的更多相关文章
- 普里姆Prim算法介绍
普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T ...
- 图解最小生成树 - 普里姆(Prim)算法
我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接 ...
- 普里姆(Prim)算法
/* 普里姆算法的主要思想: 利用二维数组把权值放入,然后找在当前顶点的最小权值,然后走过的路用一个数组来记录 */ # include <stdio.h> typedef char Ve ...
- JS实现最小生成树之普里姆(Prim)算法
最小生成树: 我们把构造连通网的最小代价生成树称为最小生成树.经典的算法有两种,普利姆算法和克鲁斯卡尔算法. 普里姆算法打印最小生成树: 先选择一个点,把该顶点的边加入数组,再按照权值最小的原则选边, ...
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- 最小生成树-普利姆(Prim)算法
最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者 ...
- 图论---最小生成树----普利姆(Prim)算法
普利姆(Prim)算法 1. 最小生成树(又名:最小权重生成树) 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一 ...
- HDU-1233 还是畅通工程 (prim 算法求最小生成树)
prim 算法求最小生成树 还是畅通工程 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- Kruskal和Prim算法求最小生成树
Kruskal算法求最小生成树 测试数据: 5 6 0 1 5 0 2 3 1 2 4 2 4 2 2 3 1 1 4 1 输出: 2 3 1 1 4 1 2 4 2 0 2 3 思路:在保证不产生回 ...
随机推荐
- MySQL 分组统计查询 表连接(3)
1 查询底薪超过公司平均底薪的员工信息? select e.empno,e.ename,e.salfrom t_emp as e join (select avg(sal) as avg from t ...
- python3 enum模块的应用
python枚举模块的学习 ps:小编刚开始学习没多久,部分资源来源于其他网友,如有出错,麻烦联系修改哈,互帮互助,共同进步 一.枚举与字典类型 字典类型的缺点:1.值可变 2.没有防止相同标签的功能 ...
- liunx 环境下安装 Eclipse C++
第一步:首先安装JDK 进入JDK官网:https://www.oracle.com/technetwork/java/javase/downloads/index.html 下载对应的jdk 注意 ...
- sql server 获取整数的函数ceiling(x)和floor(x)
--ceiling(x)返回不小于x的最小整数值,floor(x)返回不大于x的最大整数值 示例:select CEILING(-3.35), CEILING(3.35), FLOOR(-3.35), ...
- wex5 如何在js中给data添加数据
var options = { defaultValues :[ {'xuetang' : xuetang,'time' : time} ] }; this.comp("xuetangDat ...
- 多层 iframe 嵌套 js 方法调用
一下午一个这破问题,浪费了不少时间,怎么也实现不了我的上上级iframe 刷新.NND. 实现了,记录一下下吧: window.parent.parent.document.getElementByI ...
- C语言几种常用的排序算法
/* ============================================================================= 相关知识介绍(所有定义只为帮助读者理解 ...
- java软件设计模式只单例设计模式
概述 设计模式(Design pattern)是一套被反复使用.多数人知晓的.经过分类编目的.代码设计经验的总结.使用设计模式是为了可重用代码.让代码更容易被他人理解.保证代码可靠性. 毫无疑问,设计 ...
- C/C++ 零碎知识点
传递参数的一般指导原则: 对于使用传递的值而不做修改的函数: 如果数据对象很小,比如内置类型或者小型结构,按值传递. 如果数据对象是数组,只能使用指针,并将指针生命为指向const的指针. 如果数据对 ...
- Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng Course material, problem set Matlab code written ...