题意 : 给出一个N*N的矩阵, 矩阵只有可能包含0或1, 一开始则全部是0。对于矩阵可以进行两种操作, 第一种是输入 C x1 y1 x2 y2 表示, 对以(x1, y1)为左上角, 以(x2, y2)为右下角构成的矩形区域内的数全部进行取反操作, 即0变1、1变0。第二种是Q X Y, 表示查询现在这个矩阵的(X, Y)点到底是0还是1。总共有T次操作, 对于C操作进行相应的修改, 对于Q操作要对应输出!

分析 : 据说是楼教主出的题, 自己确实想不出什么高效的办法, 参考网上的题解, 才得知解题思想源自一篇国家队论文, 说简单一点就是对于题目要求的C操作, 实际上只要更新这个小矩形区域的四个点即可, 也就是不必全部照样更新。在Q操作查询时候也只要进行二维的树状数组进行(1,1)到(X, Y)点的矩形区域求和, 然后将求和结果%2, 如果得1即这个点被进行了奇数次操作, 所以应为1, 得0则反之。至于为什么或者如何做, 论文讲的很清楚, 请百度: 《浅谈信息学竞赛中的“0”和“1”

瞎想 : 很值得借鉴的是对于是否是0或1的判断, 被转化成判断了对这个点操作次数的奇偶。还有对于区间的修改, 对于一维只进行两点的起始标记, 二维则进行四个点的起始标记, 这个也是厉害!

#include<stdio.h>
#include<string.h>
#define lowbit(i) (i&(-i))
;
int c[maxn][maxn], n;
inline void add(int row, int col)
{
    for(int i=row; i<=n; i+=lowbit(i)){
        for(int j=col; j<=n; j+=lowbit(j)){
            c[i][j]++;
        }
    }
}
int sum(int row, int col)
{
    ;
    ; i-=lowbit(i)){
        ; j-=lowbit(j)){
            ans += c[i][j];
        }
    }
    return ans;
}
inline void initialize(int k)
{
    ; i<=k; i++){
        memset(c[i], , sizeof(c[i]));
    }
}
int main(void)
{
    int nCase;
    scanf("%d", &nCase);
    while(nCase--){
        scanf("%d", &n);
        initialize(n);
        int num;
        scanf("%d", &num);
        while(num--){
            char command;
            scanf(" %c", &command);
            if(command=='C'){
                int x1, y1, x2, y2;
                scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
                add(x1, y1);
                add(x2+, y1);
                add(x1, y2+);
                add(x2+, y2+);
            }else{
                int x, y;
                scanf("%d%d", &x, &y);
                int SUM = sum(x, y);
                printf();//&1和%2好像效率一样!
            }
        }
        puts("");//注意这里, 用例之间要空个行, 避免PE
    }
    ;
}

POJ 2155 Matrix (树状数组 && 区间计数)的更多相关文章

  1. poj 2155 Matrix (树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16797   Accepted: 6312 Descripti ...

  2. POJ 2155 Matrix[树状数组+差分]

    原题链接:https://vjudge.net/problem/POJ-2155 题目大意 给定 n* n 矩阵A,其元素为0或1. A [i][j] 表示第i行和第j列中的数字.最初全为0. 我们有 ...

  3. TZOJ 2722 Matrix(树状数组区间取反单点查询)

    描述 Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row ...

  4. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  5. hdu 4638 树状数组 区间内连续区间的个数(尽可能长)

    Group Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  6. 树状数组区间加法&区间求和操作

    树状数组区间加法&区间求和操作 一般的树状数组解决区间加&单点询问并不复杂 但是要解决区间求和... 我们假设原数组是\(\{a_i\}\),差分数组\(\{d_i=a_i-a_{i- ...

  7. hdu 1754 I Hate It(树状数组区间求最值)2007省赛集训队练习赛(6)_linle专场

    题意: 输入一行数字,查询第i个数到第j个数之间的最大值.可以修改其中的某个数的值. 输入: 包含多组输入数据. 每组输入首行两个整数n,m.表示共有n个数,m次操作. 接下来一行包含n个整数. 接下 ...

  8. hdu 1116 敌兵布阵(树状数组区间求和)

    题意: 给出一行数字,然后可以修改其中第i个数字,并且可以询问第i至第j个数字的和(i <= j). 输入: 首行输入一个t,表示共有t组数据. 接下来每行首行输入一个整数n,表示共有n个数字. ...

  9. 【bzoj5173】[Jsoi2014]矩形并 扫描线+二维树状数组区间修改区间查询

    题目描述 JYY有N个平面坐标系中的矩形.每一个矩形的底边都平行于X轴,侧边平行于Y轴.第i个矩形的左下角坐标为(Xi,Yi),底边长为Ai,侧边长为Bi.现在JYY打算从这N个矩形中,随机选出两个不 ...

随机推荐

  1. js --- ffmpeg rtsp 推流,websocket通信,cnavas 渲染

    首先选择正确的ffmpeg包 百度搜索ffmpeg官网,点击进入下图所示. 点击download,进入下载页面,选择window,window下面只有一个builds版本,如图红线部分圈出来的 点击b ...

  2. python 列表操作-切片

  3. vue项目中引入循环执行setInterval或者requestAnimationFrame的用法等

    项目中循环计时处理某些方法的情况还是比较常见的,一般会用setInterval来处理,但是这个方法会似的页面卡顿等使用体验不好. 所以就使用浏览器提供的requestAnimationFrame方法, ...

  4. Asp.net Core中文转换成拼音

    一.概述 之前使用.net framework,可以使用Microsoft Visual Studio International Feature Pack 1.0 进行转换,现在使用asp.net ...

  5. vim学习(一)之简介、安装、配置

    vim简介 Vim是从 vi 发展出来的一个文本编辑器,是vi的升级版本,它不仅兼容vi的所有指令,而且还有一些新的特性在里面. 简单的来说, vi 是老式的文字处理器,不过功能已经很齐全了,但是还是 ...

  6. crm---本项目的权限控制模式

    一:url权限:  最底层的权限控制,,缺点在与没有预判的机制,造成客户体验下降.           前提: 为controller中的每一个方法(即资源)定义一个资源(Resource)名称,,该 ...

  7. vue项目1-pizza点餐系统2-配置路由跳转

    功能目标:点击导航栏中的菜单.主页.路由跳转到不同的组件,点击谁就在在导航栏下展示谁. 1.在router文件夹中(在用脚手架cli搭建项目时,有个couter的选yes)的index.js中,导入如 ...

  8. 解决 "Could not autowire. No beans of 'SationMapper' type found" 的问题

    网上查找的方法,附上原文链接:https://blog.csdn.net/Coder_Knight/article/details/83999139 方法1:在mapper文件上加@Repositor ...

  9. xcode中进行git代码管理

    http://www.cocoachina.com/ios/20140524/8536.html

  10. NoSQL与其常见的产品

    一. 什么是NoSQL NoSQL(NoSQL = Not Only SQL ),意即"不仅仅是SQL",它是一种非关系型数据库. 二. 为什么要有NoSQL 在现代的计算系统上每 ...