POJ 2018 Best Cow Fences (二分答案构造新权值 or 斜率优化)
$ POJ2018BestCow Fences $(二分答案构造新权值)

$ solution: $
题目大意:
给定正整数数列 $ A $ ,求一个平均数最大的长度不小于 $ L $ 的子段
- 这道题首先我们如果没有长度限制,直接扫一遍数组即可
- 而有了长度限制之后我们的候选集合发生改变,很容让我们想到DP
- 事实上这一道题可以DP,用斜率优化复杂度极小,就是有点常数(事实上最优)
- 但是我们可以参考类似01规划的做法,因为答案具有单调行。
- 我们让数组中每一个数都减去我们二分答案枚举的值,然后求前缀和,我们只要扫描一遍即可
- 因为我们们可以从后往前,求出以每一个数为左端点的最大字段和,然后我们只需要知道将后面离它距离大于\(L\)的最大值即可,这个可以边扫描边维护(就是更新最大值)。
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define rg register int
using namespace std;
const int mod=9901;
int n,m,ans;
inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar()))if(ch=='-')sign=1;
while(isdigit(ch))res=res*10+(ch^48),ch=getchar();
if(sign)return -res; else return res;
}
inline int ksm(ll x,int y){
ll res=1;
while(y){
if(y&1)res=res*x%mod;
x=x*x%mod; y>>=1;
}return res;
}
inline int ask(int x,int y){
if(y==1)return x;
if(y&1) return ((ll)ask(x,y>>1)*(ksm(x,y>>1)+1)%mod+ksm(x,y)%mod)%mod;
else return (ll)ask(x,y>>1)*(ksm(x,y>>1)+1)%mod;
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
while(~scanf("%d%d",&n,&m)){
if(m==0){puts("1");continue;}
ans=1;
for(rg i=2;i*i<=n;++i){
if(n%i)continue;
rg x=0; while(!(n%i))++x,n/=i;
ans=(ll)ans*(ask(i%mod,x*m)+1)%mod;
}if(n!=1)ans=(ll)ans*(ask(n%mod,m)+1)%mod;
printf("%d\n",ans);
}
return 0;
}
POJ 2018 Best Cow Fences (二分答案构造新权值 or 斜率优化)的更多相关文章
- POJ 2018 Best Cow Fences(二分+最大连续子段和)
Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14601 Accepted: 4720 Desc ...
- Poj 2018 Best Cow Fences(分数规划+DP&&斜率优化)
Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Description Farmer John's farm consists of a ...
- poj2018 Best Cow Fences[二分答案or凸包优化]
题目. 首先暴力很好搞,但是优化的话就不会了.放弃QWQ. 做法1:二分答案 然后发现平均值是$ave=\frac{sum}{len}$,这种形式似乎可以二分答案?把$len$移到左边. 于是二分$a ...
- POJ 2018 Best Cow Fences(二分答案)
题目链接:http://poj.org/problem?id=2018 题目给了一些农场,每个农场有一定数量的奶牛,农场依次排列,问选择至少连续排列F个农场的序列,使这些农场的奶牛平均数量最大,求最大 ...
- POJ 2018 Best Cow Fences(二分最大区间平均数)题解
题意:给出长度>=f的最大连续区间平均数 思路:二分这个平均数,然后O(n)判断是否可行,再调整l,r.判断方法是,先求出每个数对这个平均数的贡献,再求出长度>=f的最大贡献的区间,如果这 ...
- POJ 2018 Best Cow Fences
斜率优化. 设$s[i]$表示前缀和,$avg(i,j)=(s[j]-s[i-1])/(j-(i-1))$.就是$(j,s[j])$与$(i-1,s[i-1])$两点之间的斜率. 如果,我们目前在计算 ...
- POJ 3662 Telephone Lines(二分答案+SPFA)
[题目链接] http://poj.org/problem?id=3662 [题目大意] 给出点,给出两点之间连线的长度,有k次免费连线, 要求从起点连到终点,所用的费用为免费连线外的最长的长度. 求 ...
- hdu 1853 Cyclic Tour (二分匹配KM最小权值 或 最小费用最大流)
Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/65535 K (Java/Others)Total ...
- POJ-2018 Best Cow Fences(二分加DP)
Best Cow Fences Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10174 Accepted: 3294 Desc ...
随机推荐
- Redis之Java客户端Jedis
导读 Redis不仅使用命令客户端来操作,而且可以使用程序客户端操作. 现在基本上主流的语言都有客户端支持,比如Java.C.C#.C++.php.Node.js.Go等. 在官方网站里列一些Java ...
- 在Ubuntu18.04下安装Java 11
一直以来,本人都使用第三方软件包"ppa:linuxuprising/java"安装Java JDK,最近一次安装时发现无法成功.这是由于现在无法直接从Oracle官网下载Java ...
- 消息队列之 ActiveMQ
简介 ActiveMQ 特点 ActiveMQ 是由 Apache 出品的一款开源消息中间件,旨在为应用程序提供高效.可扩展.稳定.安全的企业级消息通信. 它的设计目标是提供标准的.面向消息的.多语言 ...
- 模拟赛DAY1 T1大美江湖
这就是一个模拟题,注意1234分别对应左右上下横坐标和纵坐标的判断就好了 题解: 需要注意的是,向上取整ceil函数是对于一个double值返回一个double值,也就是说在ceil里面的类型一定要是 ...
- nginx的域名解析
1.创建域名解析结构: ngx_resolver_create(ngx_conf_t *cf, ngx_str_t *names, ngx_uint_t n) 这里面的names是dns服务器的地址 ...
- 阶段1 语言基础+高级_1-3-Java语言高级_03-常用API第二部分_第2节 Date类_5_练习_计算出一个人已经出生了多少天
Alt+回车
- golang md5 结果类型
golang md5 结果类型 package main import ( "crypto/md5" "encoding/hex" "fmt&quo ...
- css练习-容器内多元素水平居中-flexbox布局应用
想要实现这样一个父元素中的子元素都是居中的 只需在父元素上加样式 {display: flex;flex-direction: column;align-items:center;} 设置为flexb ...
- ecshop 实现“精品、新品、热销”板块出现选项卡效果的方法
最近做一个网络商城,直接使用ecshop的免费模板,懒得重新做,ecshop建站多日了,一直想在主页的板块中建网页选项卡鼠标经过自动切换效果,百度搜索这方面的内容也没找到合适的,今天一实验,成功了,所 ...
- 基于nginx实现二维码下载安装apk文件
将apk文件置于nginx目录下 <!--进入nginx安装路径--> /usr/local/nginx <!--新建放apk的目录--> mkdir -p resources ...