题目链接

题意: 给出一个n*m大小的01矩阵,在其中画线连成封闭图形,其中对每一个值为1的方格,线要恰好穿入穿出共两次,对每一个值为0的方格,所画线不能经过。

参考资料: 《基于连通性状态压缩的动态规划问题》  ——陈丹琦 2008年国家集训队论文

递推过程中,按照 遍历行->遍历行上每一格->遍历 “轮廓线跨过该格时所有可能的状态变化”   的顺序

这样复杂度是 O(n*m*2m+1)  (m+1是因为轮廓线上有m个单元是与列数对应的,另有一单独的竖线单元)

问题关键点在于解决  “轮廓线跨过该格时所有可能的状态变化”

首先是由第i行到第i+1行的递推关系。显然,第i+1行上,轮廓线未跨过任何方格,与在第i行,轮廓线跨过了所有方格,这两者轮廓线的形态是相同的,不过,前者的状态state1应表示为后者的状态state2<<1,在代码中,计数关系通过 for(int k=0;k<M;k++) dp[i][0][k<<1]=dp[i-1][m][k]; 来实现。

然后是在同一行上跨过某一格时的递推关系。不考虑方格值为0,这道题里面共有四种情况,对于具体某一格而言,即 00->11,01->10,10->01,11->00。对于方格值为0的情况,显然只能是00->00。

后继状态总计数=sigma合法的前驱状态。

具体可以借助代码来理解

#include<bits/stdc++.h>
using namespace std;
typedef long long LL; const int maxn=; int n,m;
int mp[maxn][maxn];
LL dp[maxn][maxn][<<maxn]; LL solve()
{
int M=<<(m+); //轮廓线上状态总数
dp[][m][]=;
for(int i=;i<=n;i++) //遍历行
{
for(int k=;k<M;k++)
dp[i][][k<<]=dp[i-][m][k];
for(int j=;j<=m;j++) //j用来指示轮廓线中小竖线的位置
{
int state1=(<<j),state2=(<<(j-));
for(int k=;k<M;k++)
{
if(mp[i][j])
{
if((k&state1)==&&(k&state2)==)
dp[i][j][k]=dp[i][j-][k+state1+state2];
else if((k&state1)!=&&(k&state2)!=)
dp[i][j][k]=dp[i][j-][k-state1-state2];
else if((k&state1)==&&(k&state2)!=)
{
dp[i][j][k]+=dp[i][j-][k-state2+state1];
dp[i][j][k]+=dp[i][j-][k];
}
else
{
dp[i][j][k]+=dp[i][j-][k-state1+state2];
dp[i][j][k]+=dp[i][j-][k];
}
}
else
if((k&state1)==&&(k&state2)==)
dp[i][j][k]=dp[i][j-][k];
}
}
}
return dp[n][m][];
} int main()
{
int T,kase=;
scanf("%d",&T);
while(T--)
{
memset(dp,,sizeof(dp));
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&mp[i][j]);
printf("Case %d: There are %lld ways to eat the trees.\n",++kase,solve());
}
}

hdu 1693 : Eat the Trees 【插头dp 入门】的更多相关文章

  1. hdu 1693 Eat the Trees——插头DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1693 第一道插头 DP ! 直接用二进制数表示状态即可. #include<cstdio> # ...

  2. HDU 1693 Eat the Trees ——插头DP

    [题目分析] 吃树. 直接插头DP,算是一道真正的入门题目. 0/1表示有没有插头 [代码] #include <cstdio> #include <cstring> #inc ...

  3. HDU 1693 Eat the Trees(插头DP)

    题目链接 USACO 第6章,第一题是一个插头DP,无奈啊.从头看起,看了好久的陈丹琦的论文,表示木看懂... 大体知道思路之后,还是无法实现代码.. 此题是插头DP最最简单的一个,在一个n*m的棋盘 ...

  4. hdu1693 Eat the Trees [插头DP经典例题]

    想当初,我听见大佬们谈起插头DP时,觉得插头DP是个神仙的东西. 某大佬:"考场见到插头DP,直接弃疗." 现在,我终于懂了他们为什么这么说了. 因为-- 插头DP很毒瘤! 为什么 ...

  5. HDU 1693 Eat the Trees(插头DP,入门题)

    Problem Description Most of us know that in the game called DotA(Defense of the Ancient), Pudge is a ...

  6. HDU 1693 Eat the Trees(插头DP、棋盘哈密顿回路数)+ URAL 1519 Formula 1(插头DP、棋盘哈密顿单回路数)

    插头DP基础题的样子...输入N,M<=11,以及N*M的01矩阵,0(1)表示有(无)障碍物.输出哈密顿回路(可以多回路)方案数... 看了个ppt,画了下图...感觉还是挺有效的... 参考 ...

  7. HDU - 1693 Eat the Trees(多回路插头DP)

    题目大意:要求你将全部非障碍格子都走一遍,形成回路(能够多回路),问有多少种方法 解题思路: 參考基于连通性状态压缩的动态规划问题 - 陈丹琦 下面为代码 #include<cstdio> ...

  8. HDU 1693 Eat the Trees (插头DP)

    题意:给一个n*m的矩阵,为1时代表空格子,为0时代表障碍格子,问如果不经过障碍格子,可以画一至多个圆的话,有多少种方案?(n<12,m<12) 思路: 这题不需要用到最小表示法以及括号表 ...

  9. HDU 1693 Eat the Trees

    第一道(可能也是最后一道)插头dp.... 总算是领略了它的魅力... #include<iostream> #include<cstdio> #include<cstr ...

随机推荐

  1. Python字典的json格式化处理(换行与不换行)

    Prefer = {"jim": {"War": 1.9, "the big bang": 1.0, "The lord of w ...

  2. day48—JavaScript键盘事件

    转行学开发,代码100天——2018-05-03 今天继续学习JavaScript事件基础之键盘事件. 键盘代号获取 keyCode 键盘事件:onkeydown onkeyup 如通过键盘上下左右按 ...

  3. 阶段1 语言基础+高级_1-3-Java语言高级_06-File类与IO流_08 转换流_5_InputStreamReader介绍&代码实现

    强转chart:类型 GBK

  4. 阶段1 语言基础+高级_1-3-Java语言高级_1-常用API_1_第5节 String类_8_字符串的分割方法

    使用空格分割 这个参数其实是个正则表达式 如果用英文的句号来切分就会有问题.. 没有输出任何东西 输出他的长度看下 数组的长度输出为0 注意事项:

  5. 阅读笔记12-Java 面试题 —— 老田的蚂蚁金服面试经历

    电话一面 1.自我介绍.自己做的项目和技术领域 2.项目中的监控:那个监控指标常见的哪些? 3.微服务涉及到的技术以及需要注意的问题有哪些? 4.注册中心你了解了哪些? 5.consul 的可靠性你了 ...

  6. Layerui 弹出层的位置设置

    距顶 offset: '300px' 例1: layer.msg("请先选择项!", { offset: '300px' });例2: layer.confirm("确定 ...

  7. C# DropDownList绑定添加新数据的三种方法

    一.在前台手动绑定 <asp:DropDownList ID="DropDownList1" runat="server">    <asp: ...

  8. Developer Express 第三方控件使用系列方法

    本人目前从事的开发工作主要是以C#语言进行的相关C/S的开发,在工作中也要求使用Developer Express第三方控件所以这一系列的控件使用说明都将以C#语言进行代码说明.平时工作中会慢慢的收集 ...

  9. 进程通信(multiprocessing.Queue)

    from multiprocessing import Queue Queue([maxsize]) 创建共享的进程队列.maxsize是队列中允许的最大项数.如果省略此参数,则无大小限制.底层队列使 ...

  10. Oracle DBA_EXTENTS视图 与 DBA_SEGMENTS视图

    DBA_EXTENTS describes the extents comprising the segments in all tablespaces in the database.   Note ...