[洛谷P3205] HNOI2010 合唱队
问题描述
为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形。假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<=2000),并已知任何两个人的身高都不同。假定最终排出的队形是A 个人站成一排,为了简化问题,小A想出了如下排队的方式:他让所有的人先按任意顺序站成一个初始队形,然后从左到右按以下原则依次将每个人插入最终棑排出的队形中:
-第一个人直接插入空的当前队形中。
-对从第二个人开始的每个人,如果他比前面那个人高(H较大),那么将他插入当前队形的最右边。如果他比前面那个人矮(H较小),那么将他插入当前队形的最左边。
当N个人全部插入当前队形后便获得最终排出的队形。
例如,有6个人站成一个初始队形,身高依次为1850、1900、1700、1650、1800和1750,
那么小A会按以下步骤获得最终排出的队形:
- 1850
- 1850 , 1900 因为 1900 > 1850
- 1700, 1850, 1900 因为 1700 < 1900
- 1650 . 1700, 1850, 1900 因为 1650 < 1700
- 1650 , 1700, 1850, 1900, 1800 因为 1800 > 1650
- 1750, 1650, 1700,1850, 1900, 1800 因为 1750 < 1800
因此,最终排出的队形是 1750,1650,1700,1850, 1900,1800
小A心中有一个理想队形,他想知道多少种初始队形可以获得理想的队形
输入格式
无
输出格式
注意要mod19650827
样例输入
4
1701 1702 1703 1704
样例输出
8
解析
区间DP。
首先想到设\(f[i][j]\)表示将区间\([i,j]\)变为对应区间理想排列的方案数。可以发现,我们在转移时一个不可避免的问题就是不知道如何转移。这个区间的状态不能由两个子区间合并得到,由两个端点转移也存在顺序问题。因此,我们需要升级我们的状态,以便于表示放数的顺序。
注意到两个端点中一定有一个是最后放的,并且是左端点还是右端点取决于前面一个区间最后放的数。设f[i][j]表示将[i,j]变为理想状态且最后放的数为i,g[i][j]表示将[i,j]变为理想状态且最后放的数为j。下面讨论转移。
对于f数组,讨论第i个数与第i+1与第j个数的关系,我们有如下转移方程:
f[i+1][j],a[i]<a[i+1]\\
g[i+1][j],a[i]<a[j]\\
\end{cases}
\]
对于g数组,同理可得如下状态转移方程:
f[i][j-1],a[j]>a[i]\\
g[i][j-1],a[j]>a[j-1]\\
\end{cases}
\]
最后的答案即为\(f[1][n]+g[1][n]\)。注意初始状态时长度为1的区间只有一种情况,即\(f[i][i]=1,g[i][i]=0\)。
代码
#include <iostream>
#include <cstdio>
#define N 1002
using namespace std;
int n,i,j,k,a[N],f[N][N],g[N][N];
const int mod=19650827;
int main()
{
cin>>n;
for(i=1;i<=n;i++) cin>>a[i];
for(i=1;i<=n;i++) f[i][i]=1;
for(k=1;k<=n;k++){
for(i=1;i+k-1<=n;i++){
j=i+k-1;
if(a[i]<a[i+1]) f[i][j]=(f[i][j]+f[i+1][j])%mod;
if(a[i]<a[j]) f[i][j]=(f[i][j]+g[i+1][j])%mod;
if(a[j]>a[i]) g[i][j]=(g[i][j]+f[i][j-1])%mod;
if(a[j]>a[j-1]) g[i][j]=(g[i][j]+g[i][j-1])%mod;
}
}
int ans=(f[1][n]+g[1][n])%mod;
cout<<ans<<endl;
return 0;
}
[洛谷P3205] HNOI2010 合唱队的更多相关文章
- 洛谷 P3205 [HNOI2010]合唱队 解题报告
P3205 [HNOI2010]合唱队 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为 ...
- 洛谷——P3205 [HNOI2010]合唱队
P3205 [HNOI2010]合唱队 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为 ...
- 洛谷 P3205 [HNOI2010]合唱队
题目链接 题解 区间dp \(f[i][j]\)表示i~j区间最后一次插入的是\(a[i]\) \(g[i][j]\)表示i~j区间最后一次插入的是\(a[j]\) 然后就是普通区间dp转移 Code ...
- 洛谷 P3205 [HNOI2010]合唱队(区间dp)
传送门 解题思路 观察队形的组成方式可以得出,最后一名加入区间i...j的人要么是在i位置上,要么是在j位置上,所以我们可以用dp[i][j][0]表示区间i...j最后一个加入的人站在i位置上的方案 ...
- 洛谷P3205 [HNOI2011]合唱队 DP
原题链接点这里 今天在课上听到了这个题,听完后觉得对于一道\(DP\)题目来说,好的状态定义就意味着一切啊! 来看题: 题目描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需 ...
- 「区间DP」「洛谷P3205」「 [HNOI2010]」合唱队
洛谷P3205 [HNOI2010]合唱队 题目: 题目描述 为了在即将到来的晚会上有更好的演出效果,作为 A 合唱队负责人的小 A 需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共 n 个 ...
- 【题解】洛谷P3205【HNOI2010】合唱队
洛谷 P3205:https://www.luogu.org/problemnew/show/P3205 复习区间DPing 思路 把理想队列拆分成 第一个和后面几个 划分成求后面几个的理想队列 最后 ...
- 洛谷P3203 [HNOI2010]弹飞绵羊(LCT,Splay)
洛谷题目传送门 关于LCT的问题详见我的LCT总结 思路分析 首先分析一下题意.对于每个弹力装置,有且仅有一个位置可以弹到.把这样的一种关系可以视作边. 然后,每个装置一定会往后弹,这不就代表不存在环 ...
- Bzoj2002/洛谷P3203 [HNOI2010]弹飞绵羊(分块)
题面 Bzoj 洛谷 题解 大力分块,分块大小\(\sqrt n\),对于每一个元素记一下跳多少次能跳到下一个块,以及跳到下一个块的哪个位置,修改的时候时候只需要更新元素所在的那一块即可,然后询问也是 ...
随机推荐
- ORACLE Physical Standby 级联备库搭建
搭建oracle 级联DG 现有架构:physical standby 一主二备,在此基础上,在主库下新建备库standby3.级联备库cascade 数据库版本 11.2.0.4 db_name=p ...
- (转)Jquery之ShowLoading遮罩组件
本文转载自:http://www.cnblogs.com/eczhou/archive/2012/12/18/2822788.html 一.遮罩用途及效果 ShowLoading这个jQuery插件设 ...
- Java 八大基本数据类型
相关信息获取: (1)最小值:包装类.MIN_VALUE,如 Integer.MIN_VALUE (2)最大值:包装类.MAX_VALUE,如 Integer.MAX_VALUE (3)二进制位数:包 ...
- Powershell&TFS_Part 1
目录 目录 前言 TFS 对象模型 Powershell Powershell面向对象 Powershell默认会在PC中设置执行脚本权限 调试脚本 断点 Step Microsoft Visual ...
- UI自动化之特殊处理二(弹框\下拉框\选项\文件上传)
弹框\下拉框\选项\文件上传也是一些比较特殊的操作 目录 1.弹框 2.下拉框 3.选项 4.文件上传 1.弹框 弹框有三种形式,value为alert.confirm.prompt三种的弹框,第一个 ...
- Http Handler 介绍
引言 在 Part.1 Http请求处理流程 一文中,我们了解了Http请求的处理过程以及其它一些运作原理.我们知道Http管道中有两个可用接口,一个是IHttpHandler,一个是IHttpMod ...
- day16模块,导入模板完成的三件事,起别名,模块的分类,模块的加载顺序,环境变量,from...import语法导入,from...import *,链式导入,循环导入
复习 ''' 1.生成器中的send方法 -- 给当前停止的yield发生信息 -- 内部调用__next__()取到下一个yield的返回值 2.递归:函数的(直接,间接)自调用 -- 回溯 与 递 ...
- python绘制五角星
问题描述: python中运用turtle图形模块绘制五角星 问题分析: turtle绘制图形时,得知图形中重要点的坐标非常重要. 于是,绘制五角星问题转化成为一个数学问题,计算五个顶点坐标即可. 已 ...
- 20191105 《Spring5高级编程》笔记-第5章
第5章 Spring AOP 面向切面编程(AOP)是面向对象编程(OOP)的补充.AOP通常被称为实施横切关注点的工具.术语横切关注点是指应用程序中无法从应用程序的其余部分分解并且可能导致代码重复和 ...
- Java-集合第一篇认识Java集合
1.4种集合类型 List:有序可重复集合. Queue:队列集合. Set:无序不可重复集合. ------------------------------- Map:关系映射集合. 2.所有的集合 ...