状压暴力显然可做。但是数据出的再大一点就要稳T了。理论$O(n4^m)$,只不过实际跑不满。

考虑用轮廓线DP,设$f(i,j,S)$为处理到$(i,j)$时候(这格还不确定)的轮廓线为$S$的情况(相当于把$(i,1\sim j-1)$和$(i-1,j\sim m)$的$m$个数用$S$压起来)下有多少种合法方案,然后考虑$(i,j)$这个格子填什么。

不管怎么样,这格都可以填0,将这个推向$f(i,j+1,S')$。如果左一格或上一格填了1或者这格有障碍,那不能填1,否则可以填1,同理推向$f(i,j+1,S'')$。

这里的$S'和S''$是位运算将第$j$位进行$0/1$变换的。

注意考虑细节:一行的轮廓线推完($j$循环到$m$结束后)的这个状态是要作为下一行的起始状态的。也就是$f(i,m,S)$应当推向$f(i+1,1,S')$。

我们可以通过直接滚动数组来一格一格往下推,避免换行之类的操作,详见code。

其次,这样DP不需要考虑相邻合不合法,因为我在填的时候推向后面的状态这个操作已经是保证他合法的了,即使是枚举出了不合法的,他的方案数也会是$0$,也没办法有累加作用。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define dbg(x) cerr << #x << " = " << x <<endl
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int P=1e8;
int mp[][],f[][<<];
int m,n,now,tmp,ans; int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
read(n),read(m);
for(register int i=;i<=n;++i)for(register int j=;j<=m;++j)read(mp[i][j]);
f[][]=;
for(register int i=;i<=n;++i){
for(register int j=;j<=m;now^=,++j){
for(register int k=;k<<<m;++k)if(f[now][k]){
int p2=k&(<<j-),p1=j==?:k&(<<j-);
tmp=p2?k^(<<j-):k,f[now^][tmp]+=f[now][k],f[now^][tmp]>=P&&(f[now^][tmp]-=P);
if(mp[i][j]&&!p1&&!p2)
tmp=k|(<<j-),f[now^][tmp]+=f[now][k],f[now^][tmp]>=P&&(f[now^][tmp]-=P);
f[now][k]=;
}
}
}
for(register int k=;k<<<m;++k)ans+=f[now][k],ans>=P&&(ans-=P);
return printf("%d\n",ans),;
}

理论$O(nm2^m)$。

P1879 [USACO06NOV]玉米田Corn Fields[轮廓线DP]的更多相关文章

  1. P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    P1879 [USACO06NOV]玉米田Corn Fields 状压dp水题 看到$n,m<=12$,肯定是状压鸭 先筛去所有不合法状态,蓝后用可行的状态跑一次dp就ok了 #include& ...

  2. 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...

  3. C++ 洛谷 P1879 [USACO06NOV]玉米田Corn Fields

    没学状压DP的看一下 合法布阵问题  P1879 [USACO06NOV]玉米田Corn Fields 题意:给出一个n行m列的草地(n,m<=12),1表示肥沃,0表示贫瘠,现在要把一些牛放在 ...

  4. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...

  5. 洛谷P1879 [USACO06NOV]玉米田Corn Fields (状态压缩DP)

    题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...

  6. 洛谷P1879 [USACO06NOV]玉米田Corn Fields【状压DP】题解+AC代码

    题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...

  7. P1879 [USACO06NOV]玉米田Corn Fields (状压dp入门)

    题目链接: https://www.luogu.org/problemnew/show/P1879 具体思路: 我们可以先把所有合法的情况枚举出来,然后对第一行判断有多少种情况满足,然后对于剩下的行数 ...

  8. P1879 [USACO06NOV]玉米田Corn Fields 状压dp/插头dp

    正解:状压dp/插头dp 解题报告: 链接! ……我真的太菜了……我以为一个小时前要搞完的题目调错误调了一个小时……90分到100我差不多搞了一个小时…… 然后这题还是做过的……就很气,觉得确实是要搞 ...

  9. P1879 [USACO06NOV]玉米田Corn Fields

    题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...

随机推荐

  1. Tensorflow 保存和载入训练过程

    本节涉及点: 保存训练过程 载入保存的训练过程并继续训练 通过命令行参数控制是否强制重新开始训练 训练过程中的手动保存 保存训练过程前,程序征得同意 一.保存训练过程 以下方代码为例: import ...

  2. CMMI将能力成熟度分为5个级别

    CMMI将能力成熟度分为5个级别(初始级,已管理级,已定义级,量化管理级,优化级) . 初始级 此时软件过程是无序的,有时甚至是混乱的,对过程几乎没有定义,成功取决于个人努力.管理是反应式的. .可管 ...

  3. NXP-PN511-antenna-design-quide

    NXP-PN511-antenna-design-quide  文库有下载 C1 C2

  4. 升级降级(期望DP)2019 Multi-University Training Contest 7 hdu杭电多校第7场(Kejin Player)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6656 题意: 有 1~n 个等级,你现在是1级,求升到n级的花费期望.会给你n个条件(i~i+1级升级 ...

  5. CentOS 7 配置 kcptun 实现网站加速

    目的:shadowsocks+kcptun 实现vpn加速(shadowsocks,kcptun在同一台VPS上) 一.shadowsocks安装(参考  https://www.cnblogs.co ...

  6. Django 中事务的使用

    目录 Django 中事务的使用 Django默认的事务行为 在HTTP请求上加事务 在View中实现事务控制 使用装饰器 使用context manager autocommit() commit_ ...

  7. java不同包中protected修饰的属性和方法调用方法

    protected修饰的静态属性和方法的调用方式1:直接类名调用 2:实例化父类对象进行调用 3:实例化子类对象进行调用 protected修饰的非静态属性和方法的调用方式:1:实例化子类对象进行调用 ...

  8. tomcat进行压测时,cpu占用90%

    1.top 命令查看占用cpu高的进程,pid=15019 2.查看该进程下所有占用cppu高的线程 top -Hp pid   即:top -Hp 15019 得到pid 3.获取15030的16进 ...

  9. centos配置postfix邮件服务

    1.环境初始化 [root@mail ~]# rpm -q centos-release //查看系统版本 centos-release-7-5.1804.el7.centos.x86_64 [roo ...

  10. react 基础语法使用

    刚开始不久react,在菜鸟上及其他前辈网站上学习,下面开始我的自学笔记. 包括: 渲染元素 组件(函数方法定义.es6 class定义) 事件处理 条件渲染 列表 下面代码部分将不会再写html部分 ...