Abstract
Object detection has seen huge progress in recent years, much thanks to the heavily-engineered Histograms of Oriented Gradients (HOG) features. Can we go beyond gradients and do better than HOG? We provide an affirmative answer by proposing and investigating a sparse representation for object detection, Histograms of Sparse Codes (HSC).We compute sparse codes with dictionaries learned from data using K-SVD, and aggregate per-pixel sparse codes to form local histograms. We intentionally keep true to the sliding window framework (with mixtures and parts) and only change the underlying features. To keep training (and testing) efficient, we apply dimension reduction by computing SVD on learned models, and adopt supervised training where latent positions of roots and parts are given externally e.g. from a HOG-based detector. By learning and using local representations that are much more expressive than gradients, we demonstrate large improvements over the state of the art on the PASCAL benchmark for both rootonly and part-based models.

Histograms of Sparse Codes for Object Detection用于目标检测的稀疏码直方图的更多相关文章

  1. CVPR2020论文解读:3D Object Detection三维目标检测

    CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Det ...

  2. Mask R-CNN用于目标检测和分割代码实现

    Mask R-CNN用于目标检测和分割代码实现 Mask R-CNN for object detection and instance segmentation on Keras and Tenso ...

  3. 带你读AI论文丨用于目标检测的高斯检测框与ProbIoU

    摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection&g ...

  4. Sparse R-CNN: End-to-End Object Detection with Learnable Proposals 论文解读

    前言 事实上,Sparse R-CNN 很多地方是借鉴了去年 Facebook 发布的 DETR,当时应该也算是惊艳众人.其有两点: 无需 nms 进行端到端的目标检测 将 NLP 中的 Transf ...

  5. Towards Universal Object Detection by Domain Attention

    论文及代码 论文地址:https://arxiv.org/abs/1904.04402 代码:http://www.svcl.ucsd.edu/projects/universal-detection ...

  6. zz——Recent Advances on Object Detection in MSRA

    本文由DataFun社区根据微软亚洲研究院视觉组Lead Researcher Jifeng Dai老师在2018 AI先行者大会中分享的<Recent Advances on Object D ...

  7. [论文理解] Acquisition of Localization Confidence for Accurate Object Detection

    Acquisition of Localization Confidence for Accurate Object Detection Intro 目标检测领域的问题有很多,本文的作者捕捉到了这样一 ...

  8. ICCV2019论文点评:3D Object Detect疏密度点云三维目标检测

    ICCV2019论文点评:3D Object Detect疏密度点云三维目标检测 STD: Sparse-to-Dense 3D Object Detector for Point Cloud 论文链 ...

  9. Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记

    Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...

随机推荐

  1. bzoj3028食物 关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明

    关于(1+x+x2+x3+x4+...)^k的第i项系数就是c(i+k−1,k−1)的证明对于第i项,假设为5x^5=x^0*x^5x^5=x^1*x^4x^5=x^2*x^3........也就是说 ...

  2. 第四周Java实验总结&学习总结

    实验二 Java简单类与对象 实验目的 掌握类的定义,熟悉属性.构造函数.方法的作用,掌握用类作为类型声明变量和方法返回值: 理解类和对象的区别,掌握构造函数的使用,熟悉通过对象名引用实例的方法和属性 ...

  3. 虚拟机上首次安装Ubuntu后 root密码设置

    虚拟机下安装ubuntu后root密码设置 问题描述: 在虚拟机下安装了ubuntu中要输入用户名,一般情况下大家都会输入一个自己的网名或绰号之类的,密码也在这时设置过了. 但是当安装成功之后,使用命 ...

  4. Mysql函数----控制流函数介绍

    MySQL有4个函数用来进行条件操作的,可以实现SQL的条件逻辑,允许开发者将一些应用程序业务逻辑转换到数据库后台.   MySQL控制流函数: 1.CASE WHEN[test1] THEN [re ...

  5. JDBC插入中文数据出现?号地解决问题

    1. 查看jdbc配置是否指定编码 Connection conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/te ...

  6. linux下occi操作oracle数据库,中文乱码的问题

    转载:http://www.linuxidc.com/Linux/2008-02/11238.htm 前几日调通了OCI连接数据库的问题后,用Oracle自带的例子测试了一下,能正常读取数据(都是英文 ...

  7. django后台集成富文本编辑器Tinymce的使用

    富文本编辑器Tinymce是使用步骤: 1.首先去python的模块包的网站下载一个django-tinymce的包 2.下载上图的安装包,然后解压,进入文件夹,执行: (pychrm直接运行命令pi ...

  8. P3588 [POI2015]PUS(拓扑排序+线段树)

    P3588 [POI2015]PUS 对于每个$(l,r,k)$,将$k$个位置向剩下$r-l-k+1$个位置连边,边权为$1$,这样就保证$k$个位置比剩下的大 先给所有位置填$1e9$保证最优 然 ...

  9. sqlserver 创建 aspstate的方法

    找到路径 C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727 不同版本找不同版本的路径 在命令行执行命令 aspnet_regsql.exe -ssadd -s ...

  10. [七月挑选]使用idea创建spring boot 项目

    title: 使用idea创建spring boot 项目 参考lindaZ的IntelliJ IDEA 创建spring boot 的Hello World 项目 1.Open IDEA,choos ...