python图像处理——频率域增强
图像的傅里叶变换:
import chardet
import numpy as np
import cv2 as cv
import cv2
from PIL import Image
import sys
from matplotlib import pyplot as plt
img = cv2.imread('D:/1/4.jpg',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20*np.log(np.abs(fshift))
rows, cols = img.shape
crow,ccol = int(rows/2) , int(cols/2)
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.abs(img_back)
plt.subplot(221),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(222),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.subplot(223),plt.imshow(img_back) #恢复图像
plt.title('Result in JET'), plt.xticks([]), plt.yticks([])
plt.subplot(224),plt.imshow(img_back, cmap = 'gray')
plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
plt.show()
图像的噪声处理与去噪:
def add_noise(img):
rows,cols,dims=img.shape
for i in range(5000):
x=np.random.randint(0,rows)
y=np.random.randint(0,cols)
img[x,y,:]=1
#二值化处理,以128位界
def add1_noise(img):
rows,cols=img.shape
for i in range(rows):
for j in range(cols):
if (img[i,j]<=128):
img[i,j]=0
else:
img[i,j]=1
# 高斯噪声
def GaussieNoisy(image,sigma):
row,col,ch= image.shape
mean = 0
gauss = np.random.normal(mean,sigma,(row,col,ch))
gauss = gauss.reshape(row,col,ch)
noisy = image + gauss
return noisy.astype(np.uint8)
#椒盐噪声
def spNoisy(image,s_vs_p = 0.5,amount = 0.004):
row,col,ch = image.shape
out = np.copy(image)
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape]
out[coords] = 1
num_pepper = np.ceil(amount* image.size * (1. - s_vs_p))
coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape]
out[coords] = 0
return out
img=np.array(Image.open('D:/1/1.jpg'))
plt.figure()
plt.subplot(221)
plt.title("src_img")
plt.imshow(img)
plt.axis('off')
plt.subplot(222)
plt.title("noise_img")
add_noise(img)
plt.imshow(img)
plt.axis('off')
# # 图像二值化,像素值大于128的变为1,否则变为0
img2=np.array(Image.open('D:/1/1.jpg').convert('L'))
plt.subplot(223)
plt.title("noise2_img")
add1_noise(img2)
plt.imshow(img2)
plt.axis('off')
plt.subplot(224)
plt.title("GaussieNoisy")
img3=np.array(Image.open('D:/1/1.jpg'))
plt.imshow(GaussieNoisy(img3,25))
plt.axis('off')
plt.show()
傅里叶变换与逆变换:
# 傅里叶变换:
# 傅里叶变换将低频信号放在了边缘,高频信号放在了中间,然而一副图像,
# 很明显的低频信号多而明显,所以讲低频信号移至中心
img = cv2.imread('D:/1/4.jpg',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)#将频谱对称轴从左上角移至中心
# #对于负数可以求角度:
# # ph_f=np.angle(f)
# # ph_fshift = np.angle(fshift)
#取绝对值:将复数变化成实数
#取对数的目的为了将数据变化到较小的范围(比如0-255)
s1 = np.log(np.abs(f))
s2 = np.log(np.abs(fshift))
plt.subplot(221),plt.imshow(img,'gray'),plt.title('original')
plt.xticks([]), plt.yticks([])
plt.subplot(222),plt.imshow(s2,'gray'),plt.title('center')
plt.xticks([]), plt.yticks([])
f1shift = np.fft.ifftshift(fshift)# 逆变换
img_back = np.fft.ifft2(f1shift)
img_back = np.abs(img_back)#出来的是复数,无法显示,求绝对值
plt.subplot(223),plt.imshow(img_back,'gray'),plt.title('img back')
plt.xticks([]), plt.yticks([])
plt.show()
傅里叶变换进行滤波:
傅里叶变换实现高通录滤波:
图像在变换加移动中心后,从中间到外面,频率上依次是从低频到高频的,
那么我们如果把中间规定一小部分去掉,是不是相对于把低频信号去掉了呢?
这也就是相当于进行了高通滤波
低通滤波器:把上述模板中的1变成0,0变成1
def lowPassFilter(image, d):
f = np.fft.fft2(image)
fshift = np.fft.fftshift(f)
def make_transform_matrix(d):
transfor_matrix = np.zeros(image.shape)
center_point = tuple(map(lambda x: (x - 1) / 2, s1.shape))
for i in range(transfor_matrix.shape[0]):
for j in range(transfor_matrix.shape[1]):
def cal_distance(pa, pb):
from math import sqrt
dis = sqrt((pa[0] - pb[0]) ** 2 + (pa[1] - pb[1]) ** 2)
return dis
dis = cal_distance(center_point, (i, j))
if dis <= d:
transfor_matrix[i, j] = 1
else:
transfor_matrix[i, j] = 0
return transfor_matrix
d_matrix = make_transform_matrix(d)
new_img = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift * d_matrix)))
return new_img
def highPassFilter(image,d):
f = np.fft.fft2(image)
fshift = np.fft.fftshift(f)
def make_transform_matrix(d):
transfor_matrix = np.zeros(image.shape)
center_point = tuple(map(lambda x:(x-1)/2,s1.shape))
for i in range(transfor_matrix.shape[0]):
for j in range(transfor_matrix.shape[1]):
def cal_distance(pa,pb):
from math import sqrt
dis = sqrt((pa[0]-pb[0])**2+(pa[1]-pb[1])**2)
return dis
dis = cal_distance(center_point,(i,j))
if dis <= d:
transfor_matrix[i,j]=0
else:
transfor_matrix[i,j]=1
return transfor_matrix
d_matrix = make_transform_matrix(d)
new_img = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_matrix)))
return new_img
img = cv2.imread('D:/1/5.jpg',0)
plt.figure()
plt.subplot(221)
plt.imshow(img,cmap="gray")
plt.axis("off")
plt.title('gray')
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
s1 = np.log(np.abs(fshift))
plt.subplot(222)
plt.imshow(s1,'gray')
plt.axis("off")
plt.title('Frequency Domain')
plt.subplot(223)
plt.imshow(lowPassFilter(img,100),cmap="gray")
plt.axis("off")
plt.title('lowPassFilter')
plt.subplot(224)
plt.imshow(highPassFilter(img,50),cmap="gray")
plt.axis("off")
plt.title('highPassFilter')
plt.show()
图像噪声与去噪算法
中值滤波
概述: 中值滤波是一种非线性空间滤波器, 它的响应基于图像滤波器包围的图像区域中像素的统计排序,
然后由统计排序结果的值代替中心像素的值.中值滤波器将其像素邻域内的灰度中值代替代替该像素的值. 中值滤波器的使用非常普遍,
这是因为对于一定类型的随机噪声, 它提供了一种优秀的去噪能力,比小尺寸的均值滤波器模糊程度明显要低. 中值滤波器对处理脉冲噪声(也称椒盐噪声)非常有效,
因为该噪声是以黑白点叠加在图像上面的.
均值滤波
概述: 均值滤波器的输出是包含在滤波掩模领域内像素的简单平均值.
均值滤波器最常用的目的就是减噪. 然而, 图像边缘也是由图像灰度尖锐变化带来的特性,
所以均值滤波还是存在不希望的边缘模糊负面效应.
# 图片修复程序1(实现水印去除):修复白色区域
img = cv2.imread("D:/1/2.jpg")
hight, width, depth = img.shape[0:3]
# 图片二值化处理,把[240, 240, 240]~[255, 255, 255]以外的颜色变成0
thresh = cv2.inRange(img, np.array([240, 240, 240]), np.array([255, 255, 255]))
# 创建形状和尺寸的结构元素
kernel = np.ones((3, 3), np.uint8)
# 扩张待修复区域
hi_mask = cv2.dilate(thresh, kernel, iterations=1)
specular = cv2.inpaint(img, hi_mask, 5, flags=cv2.INPAINT_TELEA)
cv2.namedWindow("Image", 0)
cv2.resizeWindow("Image", int(width / 2), int(hight / 2))
cv2.imshow("Image", img)
cv2.namedWindow("newImage", 0)
cv2.resizeWindow("newImage", int(width / 2), int(hight / 2))
cv2.imshow("newImage", specular)
cv2.waitKey(0)
cv2.destroyAllWindows()
频域高斯滤波:
def GaussianHighFilter(image,d):
f = np.fft.fft2(image)
fshift = np.fft.fftshift(f)
def make_transform_matrix(d):
transfor_matrix = np.zeros(image.shape)
center_point = tuple(map(lambda x:(x-1)/2,s1.shape))
for i in range(transfor_matrix.shape[0]):
for j in range(transfor_matrix.shape[1]):
def cal_distance(pa,pb):
from math import sqrt
dis = sqrt((pa[0]-pb[0])**2+(pa[1]-pb[1])**2)
return dis
dis = cal_distance(center_point,(i,j))
transfor_matrix[i,j] = 1-np.exp(-(dis**2)/(2*(d**2)))
return transfor_matrix
d_matrix = make_transform_matrix(d)
new_img = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_matrix)))
return new_img
def GaussianLowFilter(image,d):
f = np.fft.fft2(image)
fshift = np.fft.fftshift(f)
def make_transform_matrix(d):
transfor_matrix = np.zeros(image.shape)
center_point = tuple(map(lambda x:(x-1)/2,s1.shape))
for i in range(transfor_matrix.shape[0]):
for j in range(transfor_matrix.shape[1]):
def cal_distance(pa,pb):
from math import sqrt
dis = sqrt((pa[0]-pb[0])**2+(pa[1]-pb[1])**2)
return dis
dis = cal_distance(center_point,(i,j))
transfor_matrix[i,j] = np.exp(-(dis**2)/(2*(d**2)))
return transfor_matrix
d_matrix = make_transform_matrix(d)
new_img = np.abs(np.fft.ifft2(np.fft.ifftshift(fshift*d_matrix)))
return new_img
img = cv2.imread('D:/1/5.jpg',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
s1 = np.log(np.abs(fshift))
plt.figure()
plt.subplot(221)
plt.imshow(img,cmap="gray")
plt.axis("off")
plt.title('gray')
plt.subplot(222)
plt.axis("off")
plt.imshow(GaussianHighFilter(img,10),cmap="gray")
plt.title('GaussianHighFilter')
plt.subplot(223)
plt.axis("off")
plt.imshow(GaussianLowFilter(img,50),cmap="gray")
plt.title('GaussianLowFilter')
plt.show()
空间域的高斯滤波
def GaussianOperator(roi):
GaussianKernel = np.array([[1,2,1],[2,4,2],[1,2,1]])
result = np.sum(roi*GaussianKernel/16)
return result
def GaussianSmooth(image):
new_image = np.zeros(image.shape)
image = cv2.copyMakeBorder(image,1,1,1,1,cv2.BORDER_DEFAULT)
for i in range(1,image.shape[0]-1):
for j in range(1,image.shape[1]-1):
new_image[i-1,j-1] =GaussianOperator(image[i-1:i+2,j-1:j+2])
return new_image.astype(np.uint8)
img=cv.imread("D:/1/5.jpg",0)
new_apple = GaussianSmooth(img)
plt.subplot(121)
plt.axis("off")
plt.title("origin image")
plt.imshow(img,cmap="gray")
plt.subplot(122)
plt.axis("off")
plt.title("Gaussian image")
plt.imshow(img,cmap="gray")
plt.subplot(122)
plt.axis("off")
plt.show()
相关函数说明:
img[i,:] = im[j,:] # 将第 j 行的数值赋值给第 i 行
img[:,i] = 100 # 将第 i 列的所有数值设为 100
img[:100,:50].sum() # 计算前 100 行、前 50 列所有数值的和
img[50:100,50:100] # 50~100 行,50~100 列(不包括第 100 行和第 100 列)
img[i].mean() # 第 i 行所有数值的平均值
img[:,-1] # 最后一列
原文链接:https://blog.csdn.net/linkingfei/article/details/87433352
python图像处理——频率域增强的更多相关文章
- PIE SDK频率域滤波
1.算法功能简介 频率域滤波的基本工作流程为:空间域图像的傅里叶变换→频率域图像→设计滤波器→傅里叶逆变换→其他应用. 低通滤波,对频率域的图像通过滤波器削弱或抑制高频部分而保留低频部分的滤波方法,可 ...
- python数字图像处理(四) 频率域滤波
import matplotlib.pyplot as plt import numpy as np import cv2 %matplotlib inline 首先读入这次需要使用的图像 img = ...
- 跟我学Python图像处理丨带你掌握傅里叶变换原理及实现
摘要:傅里叶变换主要是将时间域上的信号转变为频率域上的信号,用来进行图像除噪.图像增强等处理. 本文分享自华为云社区<[Python图像处理] 二十二.Python图像傅里叶变换原理及实现> ...
- 跟我学Python图像处理丨傅里叶变换之高通滤波和低通滤波
摘要:本文讲解基于傅里叶变换的高通滤波和低通滤波. 本文分享自华为云社区<[Python图像处理] 二十三.傅里叶变换之高通滤波和低通滤波>,作者:eastmount . 一.高通滤波 傅 ...
- Python图像处理库:Pillow 初级教程
Python图像处理库:Pillow 初级教程 2014-09-14 翻译 http://pillow.readthedocs.org/en/latest/handbook/tutorial.html ...
- Python图像处理库(1)
转自:http://www.ituring.com.cn/tupubarticle/2024 第 1 章 基本的图像操作和处理 本章讲解操作和处理图像的基础知识,将通过大量示例介绍处理图像所需的 Py ...
- Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (13): Scharr 算子和 LOG 算子边缘检测技术
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (16):图像直方图
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
随机推荐
- 一、Zabbix-学习列表
近期本人在求职,面试了几家,觉得监控是一个很重要的事情,所以决定深入学习一下监控.目前的监控系统有很多,Zabbix是目前应用最广泛的开源监控之一,功能比较完善,所以决定学习一下. 目前将学习zabb ...
- JAVA日期时间相关库
Java的日期时间库比较乱,同样一个Date在java.sql下定义,同时也在java.util下也定义了一遍,真不知道SUN是怎么想的. java8以后,java通过jsr310标准引入了一套符合I ...
- chrome浏览器截长图的方法
1.首先打开一个你想要截图的长页面 2.然后按下F12 3.按Ctrl+Shift+P打开console菜单 4.在有个红对勾的位置输入Capture full size screenshot,找到C ...
- python字符串替换的2种方法
python 字符串替换可以用2种方法实现:1是用字符串本身的方法.2用正则来替换字符串 下面用个例子来实验下:a = 'hello word'把a字符串里的word替换为python 1.用字符串本 ...
- SQL Server to MySQL
使用 Navicat 导入向导迁移 会遇到以下问题 SQL Server 中的 GUID 类型字段会变成 {guid} 多个外层花括号, 导致程序问题. 部分字段类型长度不大一致, 需要手工调整. . ...
- Kibana 基本操作
es中的索引对应mysql的数据库.类型对应mysql的表.文档对应mysql的记录.映射对应mysql的索引索引:index类型:type映射:mappings 1.创建索引在kibana的Dev ...
- vue : 无法加载文件 C:\Users\XXX\AppData\Roaming\npm\vue.ps1,因为在此系统上禁止运行脚本
问题: 使用命令行安装完成vue/cli后,使用vue ui无法创建demo vue : 无法加载文件 C:\Users\yangx\AppData\Roaming\npm\vue.ps1,因为在此系 ...
- Out of memory: Kill process 25280 (php-fpm) score 86 or sacrifice child
php-fpm 耗尽服务器内存的办法 java服务今天突然宕机,通过 cat /var/log/messages进行查看,发现是系统内存溢出导致系统把java的进程杀掉了 使用top查看系统内存使用情 ...
- PAT Advanced 1065 A+B and C (64bit) (20 分)(关于g++和clang++修改后能使用)
Given three integers A, B and C in [−], you are supposed to tell whether A+B>C. Input Specificati ...
- [转]走近0day
首先,需要大家端正一下学习态度-也就是对于破解的态度.每一个有一定修为的软件破解者,也就是CRACKER,都很清楚,我们破解掉软件的序列号,功能限制,时间限制等等东西都不是最终的目的,一个真正的CRA ...