题意

给定一棵树和根,每个点有点权,强制在线询问\(x\)子树里离\(x\)距离不超过\(k\)的最小点权。

分析

  • 权值线段树合并的套路题,dfs,以深度作为下标,点权作为值,对每个点建立一颗权值线段树,然后回溯的时候合并到父节点的线段树上。
  • 合并时维护最小值,查询时也是查询区间最小值。
  • 内存给得多的情况下数组往死里开,不要白白送一发RE。

代码

#include <bits/stdc++.h>
using namespace std;
const int N=6e5+50;
const int INF=0x3f3f3f3f;
vector<int> g[N];
int a[N],n,rt,u,v,lst,q,x,k;
int mn[N*30],ls[N*30],rs[N*30],tot,dep[N],tr[N];
void insert(int &rt,int l,int r,int p,int v){
if(!rt){
rt=++tot;
}
mn[rt]=v;
int mid=(l+r)/2;
if(l<r){
if(p<=mid){
insert(ls[rt],l,mid,p,v);
}else{
insert(rs[rt],mid+1,r,p,v);
}
}
}
int merge(int a,int b){
if(!a || !b){
return a+b;
}
int rt=++tot;
mn[rt]=min(mn[a],mn[b]);
ls[rt]=merge(ls[a],ls[b]);
rs[rt]=merge(rs[a],rs[b]);
return rt;
}
int query(int rt,int l,int r,int ql,int qr){
if(!rt){
return INF;
}
if(ql<=l && qr>=r){
return mn[rt];
}
int ans=INF;
int mid=(l+r)/2;
if(ql<=mid){
ans=min(ans,query(ls[rt],l,mid,ql,qr));
}
if(qr>mid){
ans=min(ans,query(rs[rt],mid+1,r,ql,qr));
}
return ans;
}
void debug(int rt,int l,int r){
printf("%d %d %d\n",l,r,mn[rt]);
if(l==r){
return;
}
int mid=(l+r)/2;
debug(ls[rt],l,mid);
debug(rs[rt],mid+1,r);
}
void dfs(int u,int f){
dep[u]=dep[f]+1;
insert(tr[u],1,n,dep[u],a[u]);
int siz=g[u].size();
for(int i=0;i<siz;i++){
int v=g[u][i];
if(v==f){
continue;
}
dfs(v,u);
tr[u]=merge(tr[u],tr[v]);
}
}
int solve(int x,int k){
return query(tr[x],1,n,dep[x],dep[x]+k);
}
int main(){
// freopen("in.txt","r",stdin);
scanf("%d%d",&n,&rt);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
for(int i=1;i<n;i++){
scanf("%d%d",&u,&v);
g[u].push_back(v);
g[v].push_back(u);
}
dfs(rt,0);
scanf("%d",&q);
while(q--){
scanf("%d%d",&x,&k);
x=(x+lst)%n+1;
k=(k+lst)%n;
printf("%d\n",lst=solve(x,k));
}
return 0;
}

Codeforces893F_Subtree Minimum Query的更多相关文章

  1. AOJ DSL_2_A Range Minimum Query (RMQ)

    Range Minimum Query (RMQ) Write a program which manipulates a sequence A = {a0,a1,...,an−1} with the ...

  2. Range Minimum Query and Lowest Common Ancestor

    作者:danielp 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAnc ...

  3. Codeforces 893F - Subtree Minimum Query

    893F - Subtree Minimum Query 题意 给出一棵树,每次询问 \(x\) \(k\),求以 \(x\) 为根结点的子树中的结点到结点 \(x\) 的距离小于等于 \(k\) 的 ...

  4. [cf contest 893(edu round 33)] F - Subtree Minimum Query

    [cf contest 893(edu round 33)] F - Subtree Minimum Query time limit per test 6 seconds memory limit ...

  5. CF893F Subtree Minimum Query 解题报告

    CF893F Subtree Minimum Query 输入输出格式 输入格式: The first line contains two integers \(n\) and \(r\) ( \(1 ...

  6. [CF893F] Subtree Minimum Query

    Description: 给定一棵树,每次询问某点子树中到其不超过k的所有点的最小点权 强制在线 Hint: \(n,m\le 10^5\) Solution: 看到题目第一反应是以深度为下标,dfs ...

  7. Educational Codeforces Round 33 (Rated for Div. 2) F. Subtree Minimum Query(主席树合并)

    题意 给定一棵 \(n\) 个点的带点权树,以 \(1\) 为根, \(m\) 次询问,每次询问给出两个值 \(p, k\) ,求以下值: \(p\) 的子树中距离 \(p \le k\) 的所有点权 ...

  8. Subtree Minimum Query CodeForces - 893F (线段树合并+线段树动态开点)

    题目链接:https://cn.vjudge.net/problem/CodeForces-893F 题目大意:给你n个点,每一个点有权值,然后这n个点会构成一棵树,边权为1.然后有q次询问,每一次询 ...

  9. 2019.01.19 codeforces893F.Subtree Minimum Query(线段树合并)

    传送门 线段树合并菜题. 题意简述:给一棵带点权的有根树,多次询问某个点ppp子树内距离ppp不超过kkk的点的点权最小值,强制在线. 思路: 当然可以用dfsdfsdfs序+主席树水过去. 然而线段 ...

随机推荐

  1. Make文件(一)

    基本规则: 目标:依赖 (tab)规则 目标:需要生成的目标文件 依赖:生成该目标所需的一些文件 规则:由依赖文件生成目标文件的手段 tab:每条规则前必须以tab开头,使用空格不行. 例如: /** ...

  2. Python GUI教程(六):使用Qt设计师进行窗口布局

    本篇介绍使用qt设计师进行GUI窗口的布局管理,主要包含以下内容: 使用Qt设计师布局我们的窗口部件: 垂直布局: 水平布局: 网格布局: 使用间隔: 使用“伙伴”将label标签与窗口部件进行连接. ...

  3. 如何在组件中监听vuex数据变化(当vuex中state变化时,子组件需要进行更新,怎么做?)

    todo https://blog.csdn.net/qq_37899792/article/details/97640434

  4. kkfileview v2.0 发布,文件在线预览项目方案

    kkfileview文件在线预览 此项目为文件文档在线预览项目解决方案,项目使用流行的spring boot搭建,易上手和部署,部署好后可以独立提供预览服务,使用http接口访问,不需要和应用集成,具 ...

  5. android 注入框架 DI

    android 主要注入框架以及github如下: (1)Roboguice https://github.com/roboguice/roboguice (2)Butterknife https:/ ...

  6. SparseArray II

    SparseArray: SparseArray是android里为<Interger,Object>这样的Hashmap而专门写的类,目的是提高内存效率,其核心是折半查找函数(binar ...

  7. leetcode-easy-others-268 Missing Number

    mycode   80.25% class Solution(object): def missingNumber(self, nums): """ :type nums ...

  8. HANA LOG日志过大处理办法

    http://www.fenxiangzhe.net/archives/50 在SAP HANA 运维过程我们经常遇到因前期HANA LOG模式未设置成OVERWIRTE或者日志备份时间设置过长导致日 ...

  9. RF快捷键

    常用快捷键 操作 键 重命名 F2 搜索关键字 F5 执行用例 F8 创建新工程 ctrl+n 创建新测试套 ctrl+shift+f 创建新用例 ctrl+shift+t 创建新关键字 ctrl+s ...

  10. Uep的静态下拉和动态下拉建立

    uep的静态下拉和动态下拉的建立极其省事,下面介绍静态下拉的建立 静态下拉 第一步:点击增加,输入信息 第二步: 第三步:保存 第四部: 静态下拉就建立完毕了 下面介绍动态下啦建立,动态下拉更简单 动 ...